

TECHNICAL DATASHEET

Chemical Anchor Ultra Tropical

Zettex Europe B.V. Patrijsweg 1, 4791 RV Klundert The Netherlands +31 (0)888-93 88 39 info@zettex.com www.zettex.com

Product description

Chemical Anchor Ultra Tropical is a universal anchoring system for use in hollow and solid substrates in dry, wet or even flooded conditions/surfaces. Because Chemical Anchor Ultra Tropical is styrene-free it gives off little odor, making it well suited for indoor and enclosed applications. Chemical Anchor Polyester Tropical is a slow gel and has a fast cure time in high temperature environments.

Material

Polyester Epoxy resin.

Advantages

- Anchors can be placed close to free edges.
- Suitable for dry, wet and flooded holes without loss of performance.
- Reduced drilling diameters.
- Variable embedment depths.

Application areas

Zettex Chemical Anchor can be used to anchor awnings, ventilation systems, balustrades, hand rails, masonry, signs, safety barriers, racks and machinery.

Utilization

It is important not to use the first 10 centimeters of the adhesive and wait until the color is homogeneous. If the application time is exceeded, change the mixing nozzle. Subfloors should be free of dust and grease. Dust and other dirt located in the joints can be removed with the Zettex Airjet Economy. After use, hands should be thoroughly cleaned with soap, water and a moisturizing hand cream.

Packaging

• Tube 300 ml

Color White, gray and stone.

Safety recommendations

Always read the safety information before use.

Shelf life

12 months in unopened packaging. Store at temperatures between 5°C and 25°C.

Certificates

- 0756-CPD-0434 15
- ETA 11/0445
- ETAG 001-1 en 5, option
- DoP: Z-495321-13

Temperature	T Work	Temperature substrate	T Load
5°C	18 Minutes	5°C	145 Minutes
5°C to 10°C	10 Minutes	5°C to 10°C	145 Minutes
10°C to 20°C	6 Minutes	10°C to 20°C	85 Minutes
20°C to 25°C	5 Minutes	20°C to 25°C	50 Minutes
25°C to 30°C	4 Minutes	25°C to 30°C	40 Minutes
30°C	4 Willutes	30°C	35 Minutes

Note: T Work is the typical gel time at the highest base material temperature in the range. T Load is the minimum setup time required until load can be applied at the lowest base material temperature in the range.

Property		Value	Unit	Test Standard
Density		1.7	g/c m³	ASTM D 1875 @ +20°C
	24 h	60		
Compressive strength	7 days	70	N/m m²	BS6319
	24 h	11.5		
Tensile strength	7 days	12.2	N/m m²	ASTM D 638 @ +20°C
	24 h	0.1		
Elongation at Break	7 days	0.1	%	ASTM D 638 @ +20°C
	24 h	3.4		
Tensile strength	7 days	4.5	GN/m 2	ASTM D 638 @ +20°C
Bending strength	7 days	28.3	N/m m²	ASTM D 790 @ +20°C
HDT	7 days	80.8	°C	ASTM D 648 @ +20°C

Installation parameters - threaded ends								
Size			M8	M10	M12	M16	M20	M24
Diameter of nominal drill hole	do	mm	10	12	14	18	22	26
Diameter of cleaning brush	db	mm	14	14	20	20	29	29
Torque Moment	Tinst	Nm	10	20	40	80	150	200
Minimum embedment depth	hef	mm	64	80	96	128	160	192
Maximum embedment depth	hef	mm	96	120	144	192	240	288
Minimum edge distance	c _{mi} n	mm	35	40	50	65	80	96
Minimum distance	smin	mm	35	40	50	65	80	96
Minimum thickness	h _{mi} n	mm					h _{ef} + 2d _o	

Resistance properties - Combined pullout & collapse of concrete cone with threaded rods									
Size	M8	M10	M12	M16	M20	M24			

Characteristic resistance to adhesive bonding in uncracked concrete -40°C to 80°C	τ _{Rk,u} ncr	N/mm²	8.5	8.0	9.0	9.0	8.0	7.5
Partial safety factor Dry/saturated concrete	Ymc	[-]	1.8					
Factor for concrete	Ψc	C30/37 C35/45				L.12 L.19		
		C50/60				1.30		

Splitting Failure								
Size			M8	M10	M12	M16	M20	M24
Distance edges	^с сг,s р	mm	2hef					
Distance	s _{cr,s} p	mm	4hef		/	3hef		

Resistance values for threaded rod in uncracked concrete Combined pullout and failure of concrete cone and failure of concrete cone Temperature range: -40°C to 80°C											
Propert	Unit		Unit Anchor Unit								
У			M8	M10	M12	M16	M20	M24			
Effective anchoring depth = 8d	hef	mm	64	80	96	128	160	192			
Design resistance	NRd	kN	7.5	11	18.0	32.0	44.5	66.0			
Effective anchoring depth = STD	hef	mm	80	100	120	160	200	240			
Design resistance	NRd	kN	9.0	13.5	22.5	40.0	55.5	75.0			
Effective embedment depth = 12d	hef	mm	96	120	144	192	240	288			
Design resistance	NRd	kN	11	16.5	27.0	48.0	67.0	90.0			

1. Resistance values are based on combined pullout & concrete taper collapse and concrete taper collapse according to EC2-4 Design. Resistance to steel failure should also be considered - the lowest value is decisive.

2. Resistance values are for single anchors without considering close edges or eccentric loading.

3. Tabulated values relate only to the above temperature range and installation conditions.

4.Long-term temperatures are those that remain approximately constant for extended periods of time. Short-term temperatures occur at short intervals, for example: daily cycle.

5. The compressive strength of the concrete (f ck, cube) is assumed to be 20 N/mm 2.

6. For the resistance values shown, it is assumed that the geometry of the anchor(s) and concrete element is sufficient to prevent splitting failure.

Threaded rods - Characteristic values for steel fracture (tensile)										
Size	ι	nit M8 M10 N			M12	M16	M20	M24		
Steel grade 5.8	N _{Rk,} s	kN	18	29	42	79	123	177		
Partial safety factor	УMs	[-]	1.50							
Steel grade 8.8	N _{Rk,} s	kN	29	46	67	126	196	282		
Partial safety factor	УMs	[-]	1.50							
Steel grade 10.9*	N _{Rk,} s	kN	37	58	84	157	245	353		

Partial Safety Factor	УMs	[-]	1.40						
Stainless Steel A4-70	N _{Rk,} s	kN	26	41	59	110	172	247	
Partial Safety Factor	УMs	[-]	1.90						
Stainless steel A4-80	N _{Rk,} s	kN	29	46	67	126	196	282	
Partial Safety Factor	УMs	[-]			13	1.60		1	
Stainless steel Grade 1.4529	N _{Rk,} s	kN	26	41	59	110	172	247	
Partial safety factor	УMs	[-]	1.50						

Threaded rods - Characteristic values for steel f	racture	(shear -	withou	t lever	arm)			
Size	ι	Jnit	M8	M10	M12	M16	M20	M24
Steel grade 5.8	V _{Rk,s}	kN	9	15	21	39	61	88
Partial safety factor	y _{Ms}	[-]			1	L.25		
Steel grade 8.8	V _{Rk,s}	kN	15	23	34	63	98	141
Partial safety factor	y _{Ms}	[-]			1	L.25		
Steel Grade 10.9*	V _{Rk,s}	kN	18	29	42	79	123	177
Partial Safety Factor	Y Ms	[-]			1	L.50		
Stainless steel A4-70	V _{Rk,s}	kN	13	20	30	55	86	124
Partial Safety Factor	y _{Ms}	[-]			1	L.56		
Stainless steel A4-80	V _{Rk,s}	kN	15	23	34	63	98	141
Partial Safety Factor	Y Ms	[-]	1.33					
Stainless steel Grade 1.4529	V _{Rk,s}	kN	13	20	30	55	86	124
Partial safety factor	Y _{Ms}	[-]	1.25					
*High-strength galvanized bars are susceptible to britt	le fractu	re due to	hvdroae	n.				

anized bars are susceptible to brittle fracture due to hydrogen. High-streng

Threaded rods - Characteristic values for steel fractur	e (shear	- with le	ver arm)				
Size			M8	M10	M12	M16	M20	M24
Steel grade 5.8	M ⁰ _{Rk,s}	N.m	19	37	66	166	325	561
Partial safety factor	\mathbf{y}_{Ms}	[-]	1.25					
Steel grade 8.8	M ⁰ _{Rk,s}	N.m	30	60	105	266	519	898
Partial safety factor	У _{Мs}	[-]			-	L.25		
Steel Grade 10.9*	M ⁰ _{Rk,s}	N.m	37	75	131	333	649	1123
Partial Safety Factor	У _{Мs}	[-]			1	L.50		
Stainless steel A4-70	M ⁰ _{Rk,s}	N.m	26	52	92	233	454	786
Partial Safety Factor	У _{Мs}	[-]			1	L.56		
Stainless steel A4-80	M ⁰ _{Rk,s}	N.m	30	60	105	266	519	898
Partial Safety Factor	У _{Мs}	[-]			1	L.33		
Stainless steel Grade 1.4529	M ⁰ _{Rk,s}	N.m	26	52	92	233	454	786
Partial safety factor	Y _{Ms}	[-]	1.25					
Failure of concrete prying								
Factor k **			2					
Partial safety factor	Ŋ	/ _{Ms}			1	L.50		

*High-strength galvanized bars are susceptible to brittle collapse by hydrogen.

** K-value from TR029 Design of anchors with connection section 5.2.3.3