

The following excerpt are pages from the North American Product Technical Guide, Volume 2: Anchor Fastening, Edition 19.

Please refer to the publication in its entirety for complete details on this product including data development, product specifications, general suitability, installation, corrosion and spacing and edge distance guidelines. US&CA: <u>https://submittals.us.hilti.com/PTGVol2/</u>

To consult directly with a team member regarding our anchor fastening products, contact Hilti's team of technical support specialists between the hours of 7:00am – 6:00pm CST. US: 877-749-6337 or <u>HNATechnicalServices@hilti.com</u> CA: 1-800-363-4458, ext. 6 or <u>CATechnicalServices@hilti.com</u>

1-800-879-8000 www.hilti.com

3.3.8 KWIK Bolt 3 CARBON AND STAINLESS STEEL SCREW ANCHOR

PRODUCT DESCRIPTION

KWIK Bolt 3 carbon steel, stainless steel anchors, and hot-dipped galvanized plating

Anchor System			Features and Benefits
Anchor System	Hot Dipped Galvanized KB3	Stainless Steel KB3	 Used with Hilti Dust Removal System (DRS) for dustless drilling and installation (compliant with Table 1 of OSHA 1926.1153 regulations for silica dust exposure). Accurate SafeSet™ installation when using the Hilti SIW-6AT-A22 impact wrench and the SI-AT-A22 Adaptive Torque Module Length identification code facilitates quality control and inspection after installation. Through fixture installation and variable thread lengths improve productivity and accommodate various base plate thicknesses. Raised impact section (Dog Point) prevents thread damage during installation. Anchor size is same as drill bit size for easy installation. For temporary applications anchors may be driven into drilled holes after usage. Mechanical expansion allows immediate load application.
Hilti SIW-6AT-A22 impact wrench and the SI-AT-A22 Adaptive Torque Module	A-18/A22	e impact tool	conjunction with Hilti impact tools.
	\sim		
Uncracked Grou concrete cou ma	ut-filled Seismi ncrete catego isonry	c design Hollow c ries A-F adaptive tool (/	Irill bit Profis Anchor Fire sprinkler torque design software listings AT)
Approvals/Listings			
ICC-ES (International Code 2015 International Building (Residential Code (IBC/IRC)	Council) Code / International	ESR-2302 in conc ESR-1385 in grou	crete per ACI 318-14 Ch. 17 / ACI 355.2/ ICC-ES AC193 t-filled CMU per ICC-ES AC58
City of Los Angeles		City of Los Angele RR 25577M in gro	es 2017 LABC Supplement (within ESR-2032) out-filled CMU
Florida Building Code		2010 FBC with H	/HZ
FM (Factory Mutual)		Pipe hanger comp	ponents for automatic sprinkler systems 3/8 through 3/4
UL and CUL (Underwriters L	aboratory)	Pipe hanger equip	oment for fire protection services for 3/8 through 3/4
		Us	

346

Anchor Fastening Technical Guide Edition 19 | 3.0 ANCHORING SYSTEMS | 3.3.8 KWIK Bolt 3 (KB 3) CARBON AND STAINLESS STEEL SCREW ANCHOR Hilti, Inc. (U.S.) 1-800-879-8000 | en español 1-800-879-5000 | www.hilti.com | Hilti (Canada) Corporation | www.hilti.com | 1-800-363-4458

APPROVED

LISTED

MATERIAL SPECIFICATIONS

Carbon steel with electroplated zinc

All carbon steel KWIK Bolt 3 and Rod Coupling Anchors, excluding the 3/4 x 12 and 1-inch diameter sizes, have the tensile bolt fracture loads shown in table 1.

All carbon steel 3/4 x 12 and 1 inch diameter sizes and carbon steel KWIK Bolt 3 Countersunk anchor bodies have mechanical properties as listed in table 1.

Carbon steel anchor components plated in accordance with ASTM B633 to a minimum thickness of 5 µm.

Nuts conform to the requirements of ASTM A563, Grade A, Hex.

Washers meet the requirements of ASTM F844.

Expansion wedges are manufactured from carbon steel, except the following anchors have stainless steel wedges:

- All 1/4-inch diameter anchors
- 3/4x12
- All 1-inch diameter anchors
- All KWIK Bolt 3 Countersunk

Carbon steel with hot-dip galvanized plating

Anchor bodies manufactured from carbon steel have the tensile bolt fracture loads shown in table 1.

Carbon steel anchor components have an average zinc plating thickness greater than 43 µm according to ASTM A153, Class C.

Nuts conform to the requirements of ASTM A563, Grade A, Hex.

Washers meet the requirements of ASTM F844.

Stainless steel expansion wedges are manufactured from either AISI Type 304 or Type 316.

Stainless steel

Anchor bodies smaller than 3/4-inch, excluding all KWIK Bolt 3 Countersunk, are produced from AISI Type 304 or Type 316 stainless steel having the bolt fracture loads shown in table 1.

Anchor bodies 3/4-inch and larger, and all stainless steel KWIK Bolt 3 Countersunk anchor bodies, are produced from AISI Type 304 or Type 316 stainless steel having the mechanical properties shown in table 1.

Nuts meet the dimensional requirements of ASTM F594.

Washers meet the dimensional requirements of ANSI B18.22.1, Type A, plain.

Stainless steel expansion wedges for AISI Type 304 are made from either AISI Type 304 or Type 316. Stainless steel expansion wedges for AISI Type 316 anchors are made from type 316. All stainless steel nuts and washers for AISI Type 304 or Type 316 anchors are manufactured from AISI Type 304 or 316, respectively.

Table 1 - Hilti KWIK Bolt 3 Bolt fracture load (lb)¹

Nominal anchor diameter			
in.	Carbon steel	Hot-dip galvanized	Stainless steel
1/4	2,900	no offering	2,900
3/8	7,200	no offering	7,200
1/2	12,400	12,400	12,400
5/8	19,600	19,600	21,900
3/4	28,700	28,700	$f_{uta} \ge 76, f_{ya} \ge 64^2$
1	f _{uta} ≥ 88, f _{va} ≥ 75 ²	no offering	f _{uta} ≥ 76, f _{va} ≥ 64²

1 Bolt fracture loads are determined by testing in a universal tensile machine for quality control at the manufacturing facility. These loads are not intended for design use. See tables 4 and 12 for the steel design strengths of carbon steel and stainless steel, respectively.

2 All 3/4-in. stainless steel, 3/4x12 carbon steel, all 1-in. carbon steel and all 1-in. stainless steel material strengths specified by the tensile and yield strengths expressed in (ksi). Bolt fracture loads not applicable for these models. 3.3.8

INSTALLATION PARAMETERS

Figure 1 - KWIK Bolt 3 installation

Table 2 - Hilti KWIK Bolt 3 specifications

Setting		Nominal anchor diam						eter	eter			
information	Symbol	Units	1/4	3/8	1,	/2	5,	/8	3,	/4	-	1
Drill bit dia.	d _{bit}	in.	1/4	3/8	1,	/2	5,	/8	3,	/4	-	1
Minimum nominal	h	in.	1-3/4	2-3/8	2-1/4	3-5/8	3-1/2	4-3/8	4-1/4	5-5/8	4-5/8	6-3/8
embedment	nom	(mm)	(44)	(60)	(57)	(92)	(89)	(111)	(108)	(143)	117	162
Minimum effective	h	in.	1-1/2	2	2	3-1/4	3-1/8	4	3-3/4	5	4	5-3/4
embedment	II ef	(mm)	(38)	(51)	(51)	(83)	(79)	(102)	(95)	(127)	(102)	(146)
Minimum hale death	h	in.	2	2-5/8	2-5/8	4	3-7/8	4-3/4	4-1/2	5-3/4	5	6-3/4
Minimum noie depth	n _o	(mm)	(51)	(67)	(67)	(102)	(98)	(121)	(114)	(146)	(127)	(171)
Fixture hole dia.	d _h	in.	5/16	7/16	9/	16	11,	/16	13,	/16	1-1	1/8
Anchor length	l					See	e ordering	g informat	ion			
Installation torque	т	ft-lb	4	20	4	0	6	0	11	10	15	50
concrete	inst	(Nm)	(5)	(27)	(5	4)	(8	1)	(14	19)	(20	03)
Installation torque	–	ft-lb	4	15	2	5	6	5	12	20	n	ot
masonry	inst	(Nm)	(5)	(20)	(3	4)	(8	8)	(16	63)	recomr	nended
Wrench size		in.	7/16	9/16	3,	/4	15,	/16	1-1	1/8	1-1	1/2

1 For more information, see ESR-1385 and section 3.3.8.3.3. Approval value are for carbon steel anchors only.

DESIGN INFORMATION IN CONCRETE PER ACI 318.14

ACI 318-14 Chapter 17 design

The load values contained in this section are Hilti Simplified Design Tables. The load tables in this section were developed using the Strength Design parameters and variables of ESR-2302 and the equations within ACI 318-14 Chapter 17. For a detailed explanation of the Hilti Simplified Design Tables, refer to section 3.1.7. Data tables from ESR-2302 are not contained in this section, but can be found at www.icc-es.org or at www.hilti.com.

Allowable Stress Design or ASD technical information and data tables can be found at www.hilti.com.

Nominal				Tensio	n - φN _n		Shear - φV _n					
anchor diameter in.	Effective embed. in. (mm)	Nominal embed. in. (mm)	f' _c = 2,500 psi lb (kN)	f' _c = 3,000 psi lb (kN)	f' _c = 4,000 psi lb (kN)	f' _c = 6,000 psi lb (kN)	f' _c = 2,500 psi lb (kN)	f' _c = 3,000 psi lb (kN)	f' _c = 4,000 psi lb (kN)	f' _c = 6,000 psi lb (kN)		
1 //	1-1/2	1-3/4	1,025	1,080	1,180	1,330	1,545	1,690	1,950	2,390		
1/4	(38)	(44)	(4.6)	(4.8)	(5.2)	(5.9)	(6.9)	(7.5)	(8.7)	(10.6)		
2 /0	2	2-3/8	2,205	2,415	2,790	3,420	2,375	2,605	3,005	3,680		
3/0	(51)	(60)	(9.8)	(10.7)	(12.4)	(15.2)	(10.6)	(11.6)	(13.4)	(16.4)		
	2	2-1/4	2,205	2,415	2,790	3,420	2,375	2,605	3,005	3,680		
1 /0	(51)	(57)	(9.8)	(10.7)	(12.4)	(15.2)	(10.6)	(11.6)	(13.4)	(16.4)		
1/2	3-1/4	3-1/2	4,420	4,840	5,590	6,845	9,845	10,785	12,450	15,250		
	(83)	(89)	(19.7)	(21.5)	(24.9)	(30.4)	(43.8)	(48.0)	(55.4)	(67.8)		
	3-1/8	3-1/2	4,310	4,720	5,450	6,675	9,280	10,165	11,740	14,380		
E /0	(79)	(89)	(19.2)	(21.0)	(24.2)	(29.7)	(41.3)	(45.2)	(52.2)	(64.0)		
5/8	4	4-3/8	6,240	6,835	7,895	9,665	13,440	14,725	17,000	20,820		
	(102)	(111)	(27.8)	(30.4)	(35.1)	(43.0)	(59.8)	(65.5)	(75.6)	(92.6)		
	3-3/4	4-1/4	5,665	6,205	7,165	8,775	12,200	13,365	15,430	18,900		
0.14	(95)	(108)	(25.2)	(27.6)	(31.9)	(39.0)	(54.3)	(59.5)	(68.6)	(84.1)		
3/4	5	5-5/8	6,880	7,535	8,705	10,660	18,785	20,575	23,760	29,100		
	(127)	(143)	(30.6)	(33.5)	(38.7)	(47.4)	(83.6)	(91.5)	(105.7)	(129.4)		

Table 3 - Hilti KWIK Bolt 3 carbon steel design strength with concrete / pullout failure in uncracked concrete^{1,2,3,4,5}

1 See section 3.1.8 to convert design strength value to ASD value.

2 Linear interpolation between embedment depths and concrete compressive strengths is not permitted.

3 Apply spacing, edge distance, and concrete thickness factors in tables 6 to 10 as necessary. Compare to steel values in table 4. The lesser of the values is to be used for the design.

4 Tabular values are for normal weight concrete only. For lightweight concrete multiply design strength by λ_a as follows: for sand-lightweight, $\lambda_a = 0.68$; for all-lightweight, $\lambda_a = 0.60$

5 Tabular values are for static loads only. Seismic design is not permitted for uncracked concrete.

Table 4 - 3	Steel desian	strength for Hil	ti KWIK Bolt 3	carbon steel anchors ^{1,2}

Nominal anchor diameter in.	Nominal embedment in. (mm)	Tensile ³ φΝ _{sa} Ib (kN)	Shear⁴ φV _{sa} Ib (kN)				
1 / 4	1-3/4	1,590	1,065				
1/4	(44)	(7.1)	(4.7)				
2 /9	2-3/8	4,770	2,905				
3/8	(60)	(21.2)	(12.9)				
	2-1/4		4,315				
1 (2)	(57)	8,745	(19.2)				
1/2	3-1/2	(38.9)	4,390				
	(89)		(19.5)				
	3-1/2						
F /0	(89)	13,515	7,950				
5/8	4-3/8	(60.1)	(35.4)				
	(111)						
	4-1/4		10,180				
0.44	(108)	19,080	(45.3)				
3/4	5-5/8	(84.9)	10,785				
	(143)		(48.0)				

1 See section 3.1.8 to convert design strength value to ASD value.

2 KWIK Bolt 3 carbon steel anchors are to be considered ductile steel elements.

3 Tensile $\phi N_{sa} = \phi A_{se,N} f_{uta}$ as noted in ACI 318-14 Chapter 17.

4 Shear values determined by static shear tests with $\varphi V_{sa} < \varphi 0.60 A_{se,V} f_{uta}$ as noted in ACI 318-14 Chapter 17.

For a specific edge distance, the permitted spacing is calculated as follows:

$$s \ge s_{\min,2} + \frac{(s_{\min,1} - s_{\min,2})}{(c_{\min,1} - c_{\min,2})} (c - c_{\min,2})$$

Table 5 - Carbon steel Hilti KWIK Bolt 3 installation parameters¹

Setting information	Symbol	Linite					No	minal a	nchor c	liamete	r d _。				
Setting mornation	Symbol	Onits	1/4 3/8				1,	/2			5/8			3/4	
Effective minimum embedment	h	in.	1-1/2	1-1/2 2			2	3-	1/4	3-1/8	2	1	3-3	3/4	5
	"ef	(mm)	(38) (51)		(5	(51) (8		3)	(79)	(102)		(95)		(127)	
Minimum mombor thicknoss	h	in.	4	4	5	4	5	6	8	5	6	8	6	8	8
Willing the the these	n _{min}	(mm)	(102)	(102)	(127)	(102)	(127)	(152)	(203)	(127)	(152)	(203)	(152)	(203)	(203)
		in.	1-3/8	2	1-1/2	2-1/8	2	1-5/8	1-5/8	2-1/4	1-3/4	1-3/4	2-3/4	2-5/8	2-1/2
Case 1	C _{min,1}	(mm)	(35)	(51)	(38)	(54)	(51)	(41)	(41)	(57)	(44)	(44)	(70)	(67)	(64)
Case I	for s _{min 1}	in.	1-3/4	2-7/8	3-1/2	4-7/8	4-3/4	4-1/4	4	5-1/4	4-3/4	4	6-7/8	6-1/2	6-3/8
	≥	(mm)	(44)	(73)	(89)	(124)	(121)	(108)	(102)	(133)	(121)	(102)	(175)	(165)	(162)
		in.	1-5/8	2-3/8	2/3/8	2-5/8	2-3/8	2-1/4	2	3-1/8	2-3/8	2-1/4	3-3/4	3-3/8	3-3/8
Casa 2	Umin,2	(mm)	(41)	(60)	(60)	(67)	(60)	(57)	(51)	(79)	(60)	(57)	(95)	(86)	(86)
Case 2	for s _{min.2}	in.	1-1/4	1-3/4	1-3/4	2-1/2	2-1/4	2	1-7/8	2-3/8	2-1/8	2-1/8	3-3/4	3-3/8	3-1/4
	≥	(mm)	(32)	(44)	(44)	(64)	(57)	(51)	(48)	(60)	(54)	(54)	(95)	(86)	(83)

1 Linear interpolation is permitted to establish an edge distance and spacing combination between Case 1 and Case 2. Linear interpolation for a specific edge .distance c, where $c_{min,1} < c < c_{min,2}$ will determine the permissible spacings.

Table 6 - Load adjustment factors for 1/4-in. diameter Hilti KWIK Bolt 3 carbon steel anchor in uncracked concrete^{1,2}

						Edge distar	nce in shear	Concrete
	1/4-in. KB	3	Spacing factor	Edge distance	Spacing factor		II To and away	thickness factor
C	carbon ste	el	in tension	factor in tension	in shear ³	⊥ toward edge	from edge	in shear ⁴
uncr	acked con	crete	$f_{_{\mathrm{AN}}}$	f _{RN}	$f_{_{\mathrm{AV}}}$	f _{RV}	f _{RV}	${f}_{\scriptscriptstyle HV}$
Embe	edment	in.	1-3/4	1-3/4	1-3/4	1-3/4	1-3/4	1-3/4
h	nom	(mm)	(44)	(44)	(44)	(44)	(44)	(44)
n	1-1/4	(32)	0.64	n/a	0.56	n/a	n/a	n/a
ete	1-3/8	(35)	0.65	0.58	0.57	0.26	0.51	n/a
DCI	1-1/2	(38)	0.67	0.61	0.57	0.29	0.58	n/a
ပိ	2	(51)	0.72	0.75	0.60	0.45	0.75	n/a
) m	3	(76)	0.83	1.00	0.65	0.83	1.00	n/a
<u>e</u>	3-1/2	(89)	0.89		0.67	1.00		n/a
ü. ۲	4	(102)	0.94		0.70			0.88
staı - (۲	4-1/2	(114)	1.00		0.72			0.94
ŝ Di	5	(127)			0.74			0.99
lge Tes	5-1/2	(140)			0.77			1.00
ыN	6	(152)			0.79			
Thi (S	7	(178)			0.84			
) ɓլ	8	(203)			0.89			
acir	9	(229)			0.94			
Spe	10	(254)			0.99			
0,	11	(279)			1.00			

1 Linear interpolation not permitted.

2 When combining multiple load adjustment factors (e.g. for a 4 anchor pattern in a corner with thin concrete member) the design can become very conservative. To optimize the design, use Hilti PROFIS Anchor Design software or perform anchor calculation using design equations from ACI 318-14 Chapter 17.

3 Spacing factor reduction in shear, f_{AV} assumes an influence of a nearby edge. If no edge exists, then $f_{AV} = f_{AN}$.

4 Concrete thickness reduction factor in shear, f_{HV} assumes an influence of a nearby edge. If no edge exists, then f_{HV} = 1.0.

If a reduction factor value is in a shaded cell, this indicates that this specific edge distance may not be permitted with a certain spacing (or vice versa). Check with table 5 and figure 2 of this section to calculate permissable edge distance, spacing and concrete thickness combinations. Use of Hilti KWIK Bolt 3 anchors with edge distance and spacing dimensions smaller than what is noted in this table is permitted.

						Edge distar	nce in shear	
unc	3/8-in. KE carbon ste racked cor	33 eel ncrete	Spacing factor in tension $f_{\scriptscriptstyle {\rm AN}}$	Edge distance factor in tension $f_{\rm RN}$	Spacing factor in shear ³ $f_{\rm AV}$	\perp Toward edge $f_{\rm RV}$	II To and away from edge $f_{\rm RV}$	Concrete thickness factor in shear ⁴ $f_{\rm HV}$
Embe	edment	in.	2-3/8	2-3/8	2-3/8	2-3/8	2-3/8	2-3/8
h _{nom} (m 1-3/4 (4		(mm)	(60)	(60)	(60)	(60)	(60)	(60)
	1-3/4	(44)	0.65	n/a	0.57	n/a	n/a	n/a
ete	2	(51)	0.67	0.50	0.58	0.35	0.50	n/a
ncr	2-1/2	(64)	0.71	0.58	0.60	0.49	0.58	n/a
8	3	(76)	0.75	0.67	0.62	0.64	0.67	n/a
() () ()	3-1/4	(83)	0.77	0.72	0.63	0.72	0.72	n/a
<u>)</u> €	3-1/2	(89)	0.79	0.78	0.64	0.81	0.81	n/a
ц.	4	(102)	0.83	0.89	0.67	0.99	0.99	0.81
sta 1) -	4-1/2	(114)	0.88	1.00	0.69	1.00	1.00	0.86
e di s (l	5	(127)	0.92		0.71			0.91
dge	6	(152)	1.00		0.75			1.00
ickı İckı	7	(178)			0.79			
th th	8	(203)			0.83			
bu	9	(229)			0.87			
aci	10	(254)			0.91			
Sp	11	(279)			0.95			
	12	(305)			1.00			

Table 7 - Load adjustment factors for 3/8-in. diameter Hilti KWIK Bolt 3 carbon steel anchor in uncracked concrete^{1,2}

Table 8 - Load adjustment factors for 1/2-in. diameter Hilti KWIK Bolt 3 carbon steel anchor in uncracked concrete^{1,2}

									E	dge distar	nce in shea	ar	Cond	crete
	1/2-in. KB	3	Spacing	g factor	Edge d	istance	Spacing	g factor			II To an	d away	thicknes	s factor
(carbon ste	el	in ter	nsion	factor in	tension	in sh	near ³	⊥ Towa	rd edge	from	edge	in sh	near ⁴
unci	racked cor	ncrete	f_{j}	AN	f_1	RN	f_{j}	AV	f	RV	f_{1}	- RV	f_{1}	HV
Embe	edment	in.	2-1/4	3-1/2	2-1/4	3-1/2	2-1/4	3-1/2	2-1/4	3-1/2	2-1/4	3-1/2	2-1/4	3-1/2
h	nom	(mm)	(57)	(89)	(57)	(89)	(57)	(89)	(57)	(89)	(57)	(89)	(57)	(89)
	1-5/8	(41)	n/a	n/a	n/a	0.39	n/a	n/a	n/a	0.07	n/a	0.15	n/a	n/a
	2	(51)	n/a	0.60	n/a	0.42	n/a	0.54	n/a	0.10	n/a	0.20	n/a	n/a
	2-1/8	(54)	n/a	0.61	0.48	0.43	n/a	0.54	0.42	0.11	0.48	0.22	n/a	n/a
e	2-1/2	(64)	0.71	0.63	0.54	0.47	0.61	0.55	0.53	0.14	0.54	0.28	n/a	n/a
SLE	3	(76)	0.75	0.65	0.62	0.52	0.63	0.55	0.70	0.19	0.70	0.37	n/a	n/a
ouc	3-1/2	(89)	0.79	0.68	0.72	0.57	0.65	0.56	0.88	0.23	0.88	0.47	n/a	n/a
o (4	(102)	0.83	0.71	0.82	0.62	0.68	0.57	1.00	0.29	1.00	0.57	0.84	n/a
c_) nm	4-1/2	(114)	0.88	0.73	0.92	0.68	0.70	0.58		0.34		0.68	0.89	n/a
). (r	5	(127)	0.92	0.76	1.00	0.74	0.72	0.59		0.40		0.74	0.94	n/a
- ir	6	(152)	1.00	0.81		0.89	0.76	0.61		0.53		0.89	1.00	0.66
list (h)	7	(178)		0.86		1.00	0.81	0.63		0.66		1.00		0.71
le c ss	8	(203)		0.91			0.85	0.64		0.81				0.76
sdg	9	(229)		0.96			0.89	0.66		0.97				0.81
) e lic⊧	10	(254)		1.00			0.94	0.68		1.00				0.85
(s) 中	11	(279)					0.98	0.70						0.89
ing	12	(305)					1.00	0.72						0.93
bac	14	(356)						0.75						1.00
Ś	16	(406)						0.79						
	18	(457)						0.83						
	20	(508)						0.86						
	> 24	(610)						0 93						

1 Linear interpolation not permitted.

2 When combining multiple load adjustment factors (e.g. for a 4 anchor pattern in a corner with thin concrete member) the design can become very conservative. To optimize the design, use Hilti PROFIS Anchor Design software or perform anchor calculation using design equations from ACI 318-14 Chapter 17.

3 Spacing factor reduction in shear, f_{AV} assumes an influence of a nearby edge. If no edge exists, then $f_{AV} = f_{AN}$.

4 Concrete thickness reduction factor in shear, f_{HV} assumes an influence of a nearby edge. If no edge exists, then f_{HV} = 1.0.

If a reduction factor value is in a shaded cell, this indicates that this specific edge distance may not be permitted with a certain spacing (or vice versa). Check with table 5 and figure 2 of this section to calculate permissable edge distance, spacing and concrete thickness combinations. Use of Hilti KWIK Bolt 3 anchors with edge distance and spacing dimensions smaller than what is noted in this table is permitted.

3.3.8

									E	Edge distar	nce in shea	r		
	5/8-in. KB	3	Spacing	g factor	Edge d	istance	Spacing	g factor			ll to an	d away	Conc. th	nickness
	carbon ste	el	in ter	nsion	factor in	tension	in sh	near ³	⊥ towa	rd edge	from	edge	factor ir	n shear4
unc	racked cor	crete	f_{j}	AN	f_1	RN	$\int f_{j}$	AV	f_{1}	RV	f_{\parallel}	RV	f_{\parallel}	HV
Embe	edment	in.	3-1/2	4-3/8	3-1/2	4-3/8	3-1/2	4-3/8	3-1/2	4-3/8	3-1/2	4-3/8	3-1/2	4-3/8
h	n _{om}	(mm)	(89)	(111)	(89)	(111)	(89)	(111)	(89)	(111)	(89)	(111)	(89)	(111)
	1-3/4	(44)	n/a	n/a	n/a	0.32	n/a	n/a	n/a	0.07	n/a	0.14	n/a	n/a
	2	(51)	n/a	n/a	n/a	0.34	n/a	n/a	n/a	0.08	n/a	0.17	n/a	n/a
	2-1/8	(54)	n/a	0.59	n/a	0.34	n/a	0.53	n/a	0.09	n/a	0.18	n/a	n/a
	2-1/4	(57)	n/a	0.59	0.39	0.35	n/a	0.54	0.14	0.10	0.27	0.20	n/a	n/a
ete	2-3/8	(60)	0.63	0.60	0.40	0.36	0.55	0.54	0.15	0.11	0.30	0.21	n/a	n/a
ЪС.	2-1/2	(64)	0.63	0.60	0.41	0.37	0.55	0.54	0.16	0.12	0.32	0.23	n/a	n/a
ō	3	(76)	0.66	0.63	0.46	0.40	0.56	0.55	0.21	0.15	0.42	0.30	n/a	n/a
Ē	4	(102)	0.71	0.67	0.55	0.47	0.58	0.56	0.32	0.23	0.55	0.47	n/a	n/a
о Е	5	(127)	0.77	0.71	0.67	0.55	0.60	0.58	0.45	0.33	0.67	0.55	0.63	n/a
ي. تا	6	(152)	0.82	0.75	0.80	0.63	0.62	0.59	0.59	0.43	0.80	0.63	0.69	0.62
sta 1) -	7	(178)	0.87	0.79	0.93	0.74	0.64	0.61	0.75	0.54	0.93	0.74	0.74	0.67
s (h	8	(203)	0.93	0.83	1.00	0.84	0.66	0.63	0.91	0.66	1.00	0.84	0.79	0.71
dge Jes	9	(229)	0.98	0.88		0.95	0.68	0.64	1.00	0.79		0.95	0.84	0.75
icki icki	10	(254)	1.00	0.92		1.00	0.70	0.66		0.92		1.00	0.89	0.80
th (s)	11	(279)		0.96			0.72	0.67		1.00			0.93	0.83
ng	12	(305)		1.00			0.74	0.69					0.97	0.87
aci	14	(356)					0.77	0.72					1.00	0.94
Sp	16	(406)					0.81	0.75						1.00
	18	(457)					0.85	0.78						
	20	(508)					0.89	0.82						
	24	(610)					0.97	0.88						
	> 30	(762)					1.00	0.97						

Table 9 - Load adjustment factors for 5/8-in. diameter Hilti KWIK Bolt 3 carbon steel anchor in uncracked concrete^{1,2}

Table 10 - Load adjustment factors for 3/4-in. diameter Hilti KWIK Bolt 3 carbon steel anchor in uncracked concrete^{1,2}

									E	Edge distar	nce in shea	r		
	3/4-in. KB	3	Spacing	g factor	Edge d	istance	Spacing	g factor			ll to an	d away	Conc. th	nickness
	carbon ste	el	in ter	nsion	factor in	tension	in sh	near ³	⊥ towa	rd edge	from	edge	factor ir	n shear4
unc	racked cor	ocrete	f_{j}	AN	f_{1}	RN	f_{\perp}	AV	f	RV	f_{1}	RV	f_{1}	HV
Embe	edment	in.	4-1/4	5-1/2	4-1/4	5-1/2	4-1/4	5-1/2	4-1/4	5-1/2	4-1/4	5-1/2	4-1/4	5-1/2
h	nom	(mm)	(108)	(140)	(108)	(140)	(108)	(140)	(108)	(140)	(108)	(140)	(108)	(140)
	2-1/2	(64)	n/a	n/a	n/a	0.42	n/a	n/a	n/a	0.09	n/a	0.18	n/a	n/a
	2-3/4	(70)	n/a	n/a	0.36	0.44	n/a	n/a	0.15	0.11	0.31	0.21	n/a	n/a
	3	(76)	n/a	n/a	0.38	0.45	n/a	n/a	0.17	0.12	0.35	0.24	n/a	n/a
	3-1/4	(83)	n/a	0.61	0.40	0.47	n/a	0.54	0.20	0.14	0.39	0.27	n/a	n/a
ø	3-1/2	(89)	n/a	0.62	0.41	0.49	n/a	0.55	0.22	0.15	0.41	0.30	n/a	n/a
cret	3-3/4	(95)	0.67	0.63	0.43	0.50	0.57	0.55	0.24	0.17	0.43	0.34	n/a	n/a
ouo	4	(102)	0.68	0.63	0.45	0.52	0.57	0.55	0.27	0.18	0.45	0.37	n/a	n/a
Č (4-1/2	(114)	0.70	0.65	0.49	0.56	0.58	0.56	0.32	0.22	0.49	0.44	n/a	n/a
nm (c	5	(127)	0.72	0.67	0.53	0.59	0.59	0.57	0.38	0.26	0.53	0.52	n/a	n/a
)	6	(152)	0.77	0.70	0.62	0.67	0.60	0.58	0.49	0.34	0.62	0.67	0.65	n/a
- ir	7	(178)	0.81	0.73	0.72	0.75	0.62	0.59	0.62	0.43	0.72	0.75	0.70	n/a
(L) dist	8	(203)	0.86	0.77	0.82	0.84	0.64	0.61	0.76	0.52	0.82	0.84	0.75	0.66
ge c	9	(229)	0.90	0.80	0.92	0.95	0.66	0.62	0.91	0.62	0.92	0.95	0.79	0.70
knedo	10	(254)	0.94	0.83	1.00	1.00	0.67	0.64	1.00	0.73	1.00	1.00	0.83	0.74
hic /	11	(279)	0.99	0.87			0.69	0.65		0.84			0.87	0.77
g (s	12	(305)	1.00	0.90			0.71	0.66		0.96			0.91	0.81
<u>ci</u>	14	(356)		0.97			0.74	0.69		1.00			0.99	0.87
ba	16	(406)		1.00			0.78	0.72					1.00	0.93
S	18	(457)					0.81	0.74						0.99
	20	(508)					0.85	0.77						1.00
	24	(610)					0.92	0.82						
	30	(762)					1.00	0.91						
	> 36	(914)						0.99						

1 Linear interpolation not permitted.

2 When combining multiple load adjustment factors (e.g. for a 4 anchor pattern in a corner with thin concrete member) the design can become very conservative. To optimize the design, use Hilti PROFIS Anchor Design software or perform anchor calculation using design equations from ACI 318-14 Chapter 17.

3 Spacing factor reduction in shear, f_{AV} assumes an influence of a nearby edge. If no edge exists, then $f_{AV} = f_{AN}$.

4 Concrete thickness reduction factor in shear, f_{HV} assumes an influence of a nearby edge. If no edge exists, then f_{HV} = 1.0.

If a reduction factor value is in a shaded cell, this indicates that this specific edge distance may not be permitted with a certain spacing (or vice versa). Check with table 5 and figure 2 of this section to calculate permissable edge distance, spacing and concrete thickness combinations. Use of Hilti KWIK Bolt 3 anchors with edge distance and spacing dimensions smaller than what is noted in this table is permitted.

Nominal	Effective			Tensio	n - φN _n			Shear	- φV _n	
anchor diameter in.	Effective embed. in. (mm)	Nominal embed. in. (mm)	f' _c = 2,500 psi lb (kN)	f' _c = 3,000 psi lb (kN)	f' _c = 4,000 psi lb (kN)	f' _c = 6,000 psi Ib (kN)	f' _c = 2,500 psi lb (kN)	f' _c = 3,000 psi lb (kN)	f' _c = 4,000 psi Ib (kN)	f' _c = 6,000 psi Ib (kN)
1 //	1-1/2	1-3/4	730	770	840	950	1,545	1,690	1,950	2,390
1/4	(38)	(44)	(3.2)	(3.4)	(3.7)	(4.2)	(6.9)	(7.5)	(8.7)	(10.6)
2 /9	2	2-3/8	1,925	2,110	2,440	2,985	2,375	2,605	3,005	3,680
3/0	(51)	(60)	(8.6)	(9.4)	(10.9)	(13.3)	(10.6)	(11.6)	(13.4)	(16.4)
	2	2-1/4	2,150	2,355	2,720	3,335	2,375	2,605	3,005	3,680
1 /0	(51)	(57)	(9.6)	(10.5)	(12.1)	(14.8)	(10.6)	(11.6)	(13.4)	(16.4)
1/2	3-1/4	3-1/2	3,920	4,295	4,960	6,070	9,845	10,785	12,450	15,250
	(83)	(89)	(17.4)	(19.1)	(22.1)	(27.0)	(43.8)	(48.0)	(55.4)	(67.8)
	3-1/8	3-1/2	4,050	4,435	5,120	6,275	9,280	10,165	11,740	14,380
E /0	(79)	(89)	(18.0)	(19.7)	(22.8)	(27.9)	(41.3)	(45.2)	(52.2)	(64.0)
5/6	4	4-3/8	5,090	5,575	6,440	7,885	13,440	14,725	17,000	20,820
	(102)	(111)	(22.6)	(24.8)	(28.6)	(35.1)	(59.8)	(65.5)	(75.6)	(92.6)
	3-3/4	4-1/4	5,560	6,090	7,035	8,615	12,200	13,365	15,430	18,900
2 /4	(95)	(108)	(24.7)	(27.1)	(31.3)	(38.3)	(54.3)	(59.5)	(68.6)	(84.1)
3/4	5	5-1/2	7,040	7,710	8,905	10,905	18,785	20,575	23,760	29,100
	(127)	(140)	(31.3)	(34.3)	(39.6)	(48.5)	(83.6)	(91.5)	(105.7)	(129.4)
	4	4-1/2	6,240	6,835	7,895	9,665	13,440	14,725	17,000	20,820
4	(102)	(114)	(27.8)	(30.4)	(35.1)	(43.0)	(59.8)	(65.5)	(75.6)	(92.6)
I	5-3/4	6-1/4	10,110	11,070	12,785	15,660	23,165	25,375	29,300	35,885
	(146)	(159)	(45.0)	(49.2)	(56.9)	(69.7)	(103.0)	(112.9)	(130.3)	(159.6)

Table 11 - Hilti KWIK Bolt 3 stainless steel design strength with concrete / pullout failure in uncracked concrete^{1,2,3,4,5}

1 See section 3.1.8 to convert design strength value to ASD value.

2 Linear interpolation between embedment depths and concrete compressive strengths is not permitted.

3 Apply spacing, edge distance, and concrete thickness factors in tables 14 to 19 as necessary. Compare to steel values in table 12. The lesser of the values is to be used for the design.

4 Tabular values are for normal-weight concrete only. For lightweight concrete multiply design strength by λ_a as follows: for sand-lightweight, $\lambda_a = 0.68$; for all-lightweight, $\lambda_a = 0.60$

5 Tabular values are for static loads only. Seismic design is not permitted for uncracked concrete.

Table 12 - Steel design strength for Hilti KWIK Bolt 3 stainless steel anchors^{1,2}

Nominal anchor diameter in.	Nominal embedment in. (mm)	Tensile ³ φN _{sa} Ib (kN)	Shear⁴ φV _{sa} Ib (kN)
1/4	1-3/4	1,725	1,090
1/4	(44)	(7.7)	(4.8)
2 /9	2-3/8	5,175	3,235
3/0	(60)	(23.0)	(14.4)
	2-1/4		2,725
1/0	(57)	9,490	(12.1)
1/2	3-1/2	(42.2)	4,510
	(89)		(20.1)
	3-1/2		5,820
E /9	(89)	14,665	(25.9)
5/6	4-3/8	(65.2)	9,295
	(111)		(41.3)
	4-1/4		7,735
2/4	(108)	16,200	(34.4)
3/4	5-1/2	(72.1)	15,305
	(140)		(68.1)
	4-1/2		8,130
4	(114)	31,735	(36.2)
I	6-1/4	(141.2)	17,775
	(159)		(79.1)

1 See section 3.1.8 to convert design strength value to ASD value.

2 KWIK Bolt 3 stainless steel anchors are to be considered ductile steel elements.

3 Tensile $\phi N_{sa} = \phi A_{se,N} f_{uta}$ as noted in ACI 318-14 Chapter 17.

4 Shear values determined by static shear tests with $\phi V_{sa} < \phi 0.60 A_{se,V} f_{uta}$ as noted in ACI 318-14 Chapter 17.

For a specific edge distance, the permitted spacing is calculated as follows:

$$s \ge s_{\min,2} + \frac{(s_{\min,1} - s_{\min,2})}{(c_{\min,1} - c_{\min,2})} (c - c_{\min,2})$$

Table 13 - Stainless steel Hilti KWIK Bolt 3 installation parameters¹

Setting								No	minal a	nchor c	liamete	r d _。					
information	Symbol	Units	1/4	3,	/8		1,	/2			5/8			3/4		1	I
Effective minimum	h	in.	1-1/2	2	2	1	2	3-	1/4	3-1/8	2	1	3-3	3/4	5	4	5-3/4
embedment	II _{ef}	(mm)	(38)	(5	1)	(5	1)	(8	3)	(79)	(10)2)	(9	5)	(127)	(102)	(146)
Minimum member	h	in.	4	4	5	4	6	6	8	5	6	8	6	8	8	8	10
thickness	min	(mm)	(102)	(102)	(127)	(102)	(152)	(152)	(203)	(127)	(152)	(203)	(152)	(203)	(203)	(203)	(254)
		in.	1-3/8	2	1-5/8	2-1/2	1-7/8	1-5/8	1-5/8	3-1/4	2-1/2	2-1/2	3-1/4	3	2-7/8	3-1/2	3
Case 1	C _{min,1}	(mm)	(35)	(51)	(41)	(68)	(48)	(41)	(41)	(83)	(64)	(64)	(83)	(76)	(73)	(89)	(76)
Case I	for s _{min 1}	in.	1-3/4	4	3-5/8	5	4-5/8	4-1/2	4-1/4	5-5/8	5-1/4	5	7	6-7/8	6-5/8	6-3/4	6-3/4
	≥	(mm)	(44)	(102)	(92)	(127)	(117)	(114)	(108)	(143)	(133)	(127)	(178)	(175)	(168)	(172)	(172)
		in.	1-5/8	3-1/4	2-1/2	2-7/8	2-3/8	2-3/8	2-1/8	3-7/8	3	2-3/4	4-1/8	3-3/4	3-3/4	4-1/4	3-3/4
0	C _{min,2}	(mm)	(41)	(83)	(64)	(73)	(60)	(60)	(54)	(98)	(76)	(70)	(105)	(95)	(95)	(108)	(95)
0ase 2	for s _{min.2}	in.	1-1/4	2	1-3/4	2-1/2	2-1/4	2-1/8	1-7/8	3-1/8	2-1/8	2-1/8	4	3-1/2	3-1/2	5	4-3/4
	≥	(mm)	(32)	(51)	(44)	(64)	(57)	(54)	(48)	(79)	(54)	(54)	(102)	(89)	(89)	(127)	(121)

1 Linear interpolation is permitted to establish an edge distance and spacing combination between Case 1 and Case 2. Linear interpolation for a specific edge .distance c, where $c_{min,1} < c < c_{min,2}$ will determine the permissible spacings.

Table 14 - Load adjustment factors for	/4-in. diameter Hilti KWIK Bolt 3 stainless stee	anchor in uncracked concrete ^{1,2}
--	--	---

						Edge distar	nce in shear	Concrete
	1/4-in. KB	3	Spacing factor	Edge distance	Spacing factor		II to and away	thickness factor
st	tainless st	eel	in tension	factor in tension	in shear ³	⊥ toward edge	from edge	in shear4
uncracked uoncrete			$f_{\scriptscriptstyle {\sf AN}}$	${f_{\scriptscriptstyle {\sf RN}}}$	$f_{\scriptscriptstyle {\sf AV}}$	f _{RV}	${f_{\scriptscriptstyleRV}}$	$f_{\scriptscriptstyle \rm HV}$
Embe	edment	in.	1-3/4	1-3/4	1-3/4	1-3/4	1-3/4	1-3/4
h	nom	(mm)	(44)	(44)	(44)	(44)	(44)	(44)
	1-1/4	(32)	0.64	n/a	0.56	n/a	n/a	n/a
ete	1-3/8	(35)	0.65	0.53	0.57	0.26	0.51	n/a
Ď	1-1/2	(38)	0.67	0.56	0.57	0.29	0.56	n/a
Ğ	2	(51)	0.72	0.68	0.60	0.45	0.68	n/a
⇒ Ê	3	(76)	0.83	1.00	0.65	0.83	1.00	n/a
<u>j</u> e	3-1/2	(89)	0.89		0.67	1.00		n/a
i. Ce	4	(102)	0.94		0.70			0.88
star) -	4-1/2	(114)	1.00		0.72			0.94
s (h	5	(127)			0.74			0.99
ge es	5-1/2	(140)			0.77			1.00
, ed	6	(152)			0.79			
thic	7	(178)			0.84			
) <u>6</u> (8	(203)			0.89			
acir	9	(229)			0.94			
Spé	10	(254)			0.99			
	11	(279)			1.00			

1 Linear interpolation not permitted.

2 When combining multiple load adjustment factors (e.g. for a 4 anchor pattern in a corner with thin concrete member) the design can become very conservative. To optimize the design, use Hilti PROFIS Anchor Design software or perform anchor calculation using design equations from ACI 318-14 Chapter 17.

3 Spacing factor reduction in shear, f_{AV} assumes an influence of a nearby edge. If no edge exists, then $f_{AV} = f_{AN}$.

4 Concrete thickness reduction factor in shear, f_{HV} assumes an influence of a nearby edge. If no edge exists, then f_{HV} = 1.0.

If a reduction factor value is in a shaded cell, this indicates that this specific edge distance may not be permitted with a certain spacing (or vice versa). Check with table 13 and figure 3 of this section to calculate permissable edge distance, spacing and concrete thickness combinations. Use of Hilti KWIK Bolt 3 anchors with edge distance and spacing dimensions smaller than what is noted in this table is permitted.

						Edge distar	nce in shear	Concrete
S	3/8-in. KB tainless sto racked cor	3 eel ocrete	Spacing factor in tension f	Edge distance factor in tension f	Spacing factor in shear ³ f	\perp toward edge	II to and away from edge f	thickness factor in shear ⁴ f
Embedment in.			J AN	, RN	J _{AV}	, _{RV}	, RV	J HV
EMDE	eament	in.	2-3/8	2-3/8	2-3/8	2-3/8	2-3/8	2-3/8
n	nom	(mm)	(60)	(60)	(60)	(60)	(60)	(60)
Ð	2	(51)	0.67	0.51	0.58	0.35	0.51	n/a
ret	2-1/2	(64)	0.71	0.60	0.60	0.49	0.60	n/a
buo	3	(76)	0.75	0.69	0.62	0.64	0.69	n/a
Ŭ \	3-1/2	(89)	0.79	0.80	0.64	0.81	0.81	n/a
nm.	4	(102)	0.83	0.91	0.67	0.99	0.99	0.81
е С	4-1/2	(114)	0.88	1.00	0.69	1.00	1.00	0.86
- ir	5	(127)	0.92		0.71			0.91
(h)	6	(152)	1.00		0.75			1.00
e c	7	(178)			0.79			
adg	8	(203)			0.83			
	9	(229)			0.87			
t (s)	10	(254)			0.91			
sinç	11	(279)			0.95			
pac	12	(305)			1.00			
S	14	(356)						

Table 15 - Load adjustment factors for 3/8-in. diameter Hilti KWIK Bolt 3 stainless steel anchor in uncracked concrete^{1,2}

Table 16 - Load adjustment factors for 1/2-in. diameter Hilti KWIK Bolt 3 stainless steel anchor in uncracked concrete^{1,2}

									E	dge distar	nce in shea	ar	Con	crete
	1/2-in. KB	3	Spacing	g factor	Edge d	istance	Spacing	g factor			II to an	d away	thicknes	s factor
s	tainless ste	eel	in ter	nsion	factor in	tension	in sh	near ³	⊥ towa	rd edge	from	edge	in sh	near ⁴
unci	racked cor	icrete	f	AN	f	RN	f	AV	f	RV	f	RV	f	HV
Embe	edment	in.	2-1/4	3-1/2	2-1/4	3-1/2	2-1/4	3-1/2	2-1/4	3-1/2	2-1/4	3-1/2	2-1/4	3-1/2
h _{nom} (mm)		(mm)	(57)	(89)	(57)	(89)	(57)	(89)	(57)	(89)	(57)	(89)	(57)	(89)
	1-5/8	(41)	n/a	n/a	n/a	0.39	n/a	n/a	n/a	0.07	n/a	0.15	n/a	n/a
	2	(51)	n/a	n/a	n/a	0.42	n/a	n/a	n/a	0.10	n/a	0.20	n/a	n/a
	2-1/8	(54)	n/a	0.61	n/a	0.43	n/a	0.54	n/a	0.11	n/a	0.22	n/a	n/a
e	2-1/2	(64)	0.71	0.63	0.54	0.47	0.61	0.55	0.53	0.14	0.54	0.28	n/a	n/a
CLE	3	(76)	0.75	0.65	0.62	0.52	0.63	0.55	0.70	0.19	0.70	0.37	n/a	n/a
ö	3-1/2	(89)	0.79	0.68	0.72	0.57	0.65	0.56	0.88	0.23	0.88	0.47	n/a	n/a
° (=	4	(102)	0.83	0.71	0.82	0.62	0.68	0.57	1.00	0.29	1.00	0.57	0.84	n/a
nn Du	4-1/2	(114)	0.88	0.73	0.92	0.68	0.70	0.58		0.34		0.68	0.89	n/a
Э. с	5	(127)	0.92	0.76	1.00	0.74	0.72	0.59		0.40		0.74	0.94	n/a
- an	6	(152)	1.00	0.81		0.89	0.76	0.61		0.53		0.89	1.00	0.66
(r)	7	(178)		0.86		1.00	0.81	0.63		0.66		1.00		0.71
ge c	8	(203)		0.91			0.85	0.64		0.81				0.76
edo an	9	(229)		0.96			0.89	0.66		0.97				0.81
hicl	10	(254)		1.00			0.94	0.68		1.00				0.85
d (s t	11	(279)					0.98	0.70						0.89
ů.	12	(305)					1.00	0.72						0.93
pac	14	(356)						0.75						1.00
S	16	(406)						0.79						
	18	(457)						0.83						
	20	(508)						0.86						
	> 24	(610)						0.93						

1 Linear interpolation not permitted.

2 When combining multiple load adjustment factors (e.g. for a 4 anchor pattern in a corner with thin concrete member) the design can become very conservative. To optimize the design, use Hilti PROFIS Anchor Design software or perform anchor calculation using design equations from ACI 318-14 Chapter 17.

3 Spacing factor reduction in shear, f_{AV} assumes an influence of a nearby edge. If no edge exists, then $f_{AV} = f_{AN}$.

4 Concrete thickness reduction factor in shear, f_{HV} assumes an influence of a nearby edge. If no edge exists, then f_{HV} = 1.0.

If a reduction factor value is in a shaded cell, this indicates that this specific edge distance may not be permitted with a certain spacing (or vice versa). Check with table 13 and figure 3 of this section to calculate permissable edge distance, spacing and concrete thickness combinations. Use of Hilti KWIK Bolt 3 anchors with edge distance and spacing dimensions smaller than what is noted in this table is permitted.

									E	dge distar	nce in shea	ar	Cond	crete
	5/8-in. KB	3	Spacing	g factor	Edge d	istance	Spacing	g factor			II to an	d away	thicknes	s factor
S	tainless ste	eel	in ter	nsion	factor in	tension	in sh	near ³	⊥ towa	rd edge	from	edge	in sh	near4
unci	racked cor	icrete	f_{j}	AN	$f_{\rm F}$	RN	f_{j}	AV	f	RV	f	RV	f	HV
Embe	edment	in.	3-1/2	4-3/8	3-1/2	4-3/8	3-1/2	4-3/8	3-1/2	4-3/8	3-1/2	4-3/8	3-1/2	4-3/8
h_{nom} (mm)		(89)	(111)	(89)	(111)	(89)	(111)	(89)	(111)	(89)	(111)	(89)	(111)	
	2-1/8	(54)	n/a	0.59	n/a	n/a	n/a	0.53	n/a	n/a	n/a	n/a	n/a	n/a
	2-1/2	(64)	n/a	0.60	n/a	0.37	n/a	0.54	n/a	0.12	n/a	0.23	n/a	n/a
	3	(76)	n/a	0.63	n/a	0.40	n/a	0.55	n/a	0.15	n/a	0.30	n/a	n/a
ę	3-1/8	(79)	0.67	0.63	n/a	0.41	0.56	0.55	n/a	0.16	n/a	0.32	n/a	n/a
cre	3-1/4	(83)	0.67	0.64	0.49	0.42	0.56	0.55	0.24	0.17	0.47	0.34	n/a	n/a
Ö	3-1/2	(89)	0.69	0.65	0.51	0.44	0.57	0.56	0.26	0.19	0.51	0.38	n/a	n/a
~ (=	4	(102)	0.71	0.67	0.56	0.47	0.58	0.56	0.32	0.23	0.56	0.47	n/a	n/a
nn mr	5	(127)	0.77	0.71	0.68	0.55	0.60	0.58	0.45	0.33	0.68	0.55	0.63	n/a
- (e	6	(152)	0.82	0.75	0.81	0.63	0.62	0.59	0.59	0.43	0.81	0.63	0.69	0.62
- ii	7	(178)	0.87	0.79	0.95	0.74	0.64	0.61	0.75	0.54	0.95	0.74	0.74	0.67
(h)	8	(203)	0.93	0.83	1.00	0.84	0.66	0.63	0.91	0.66	1.00	0.84	0.79	0.71
ge (9	(229)	0.98	0.88		0.95	0.68	0.64	1.00	0.79		0.95	0.84	0.75
kné	10	(254)	1.00	0.92		1.00	0.70	0.66		0.92		1.00	0.89	0.80
hic /	11	(279)		0.96			0.72	0.67		1.00			0.93	0.83
d (s	12	(305)		1.00			0.74	0.69					0.97	0.87
Sing	14	(356)					0.77	0.72					1.00	0.94
pac	16	(406)					0.81	0.75						1.00
S	18	(457)					0.85	0.78						
	20	(508)					0.89	0.82						
	24	(610)					0.97	0.88						
	> 30	(762)					1.00	0.97						

Table 17 - Load adjustment factors for 5/8-in. diameter Hilti KWIK Bolt 3 stainless steel anchor in uncracked concrete^{1,2}

Table 18 - Load adjustment factors for 3/4-in. diameter Hilti KWIK Bolt 3 stainless steel anchor in uncracked concrete^{1,2}

									E	dge distar	nce in shea	ar	Cond	crete
	3/4-in. KB	3	Spacing	g factor	Edge d	istance	Spacing	g factor			II to an	d away	thicknes	s factor
S	tainless ste	eel	in ter	nsion	factor in	tension	in sh	near ³	⊥ towa	rd edge	from	edge	in sh	near ⁴
unci	racked cor	ncrete	f_{j}	AN	f_{i}	RN	f_{j}	AV	f_{1}	RV	f_{1}	RV	f_{μ}	HV
Embe	edment	in.	4-1/4	5-1/2	4-1/4	5-1/2	4-1/4	5-1/2	4-1/4	5-1/2	4-1/4	5-1/2	4-1/4	5-1/2
h _{nom} (mm) 2-7/8 (73)		(mm)	(108)	(140)	(108)	(140)	(108)	(140)	(108)	(140)	(108)	(140)	(108)	(140)
	2-7/8	(73)	n/a	n/a	n/a	0.43	n/a	n/a	n/a	0.11	n/a	0.23	n/a	n/a
	3	(76)	n/a	n/a	n/a	0.44	n/a	n/a	n/a	0.12	n/a	0.24	n/a	n/a
	3-1/4	(83)	n/a	n/a	0.37	0.46	n/a	n/a	0.20	0.14	0.37	0.27	n/a	n/a
e	3-1/2	(89)	n/a	0.62	0.39	0.47	n/a	0.55	0.22	0.15	0.39	0.30	n/a	n/a
cret	4	(102)	0.68	0.63	0.42	0.51	0.57	0.55	0.27	0.18	0.42	0.37	n/a	n/a
ouc	4-1/2	(114)	0.70	0.65	0.45	0.54	0.58	0.56	0.32	0.22	0.45	0.44	n/a	n/a
o (5	(127)	0.72	0.67	0.49	0.58	0.59	0.57	0.38	0.26	0.49	0.52	n/a	n/a
c_) nn	6	(152)	0.77	0.70	0.57	0.65	0.60	0.58	0.49	0.34	0.57	0.65	0.65	n/a
ce (7	(178)	0.81	0.73	0.67	0.73	0.62	0.59	0.62	0.43	0.67	0.73	0.70	n/a
ano - ir	8	(203)	0.86	0.77	0.76	0.82	0.64	0.61	0.76	0.52	0.76	0.82	0.75	0.66
list (h)	9	(229)	0.90	0.80	0.86	0.92	0.66	0.62	0.91	0.62	0.91	0.92	0.79	0.70
je c	10	(254)	0.94	0.83	0.95	1.00	0.67	0.64	1.00	0.73	1.00	1.00	0.83	0.74
edç	11	(279)	0.99	0.87	1.00		0.69	0.65		0.84			0.87	0.77
)/(12	(305)	1.00	0.90			0.71	0.66		0.96			0.91	0.81
g (s tl	14	(356)		0.97			0.74	0.69		1.00			0.99	0.87
ing	16	(406)		1.00			0.78	0.72					1.00	0.93
oac	18	(457)					0.81	0.74						0.99
S	20	(508)					0.85	0.77						1.00
	24	(610)					0.92	0.82						
	30	(762)					1.00	0.91						
	> 36	(914)						0.99						

1 Linear interpolation not permitted.

2 When combining multiple load adjustment factors (e.g. for a 4 anchor pattern in a corner with thin concrete member) the design can become very conservative. To optimize the design, use Hilti PROFIS Anchor Design software or perform anchor calculation using design equations from ACI 318-14 Chapter 17.

3 Spacing factor reduction in shear, f_{AV} assumes an influence of a nearby edge. If no edge exists, then $f_{AV} = f_{AN}$.

4 Concrete thickness reduction factor in shear, f_{HV} assumes an influence of a nearby edge. If no edge exists, then f_{HV} = 1.0.

If a reduction factor value is in a shaded cell, this indicates that this specific edge distance may not be permitted with a certain spacing (or vice versa). Check with table 13 and figure 3 of this section to calculate permissable edge distance, spacing and concrete thickness combinations. Use of Hilti KWIK Bolt 3 anchors with edge distance and spacing dimensions smaller than what is noted in this table is permitted.

									E	dge distar	nce in shea	ar	Con	crete
	1-in. KB3 Spacing stainless steel in ter		g factor	Edge d	istance	Spacing	g factor			II to an	d away	thicknes	ss factor	
s	tainless st	eel	in ter	nsion	factor in	tension	in sh	near ³	⊥ towa	rd edge	from	edge	in sł	near ⁴
unci	racked cor	ncrete	f	AN	f	RN	f	AV	f	- RV	f f	- RV	f	HV
Embe	edment	in.	4-1/2	6-1/4	4-1/2	6-1/4	4-1/2	6-1/4	4-1/2	6-1/4	4-1/2	6-1/4	4-1/2	6-1/4
h _{nom} (mm)		(mm)	(114)	(159)	(114)	(159)	(114)	(159)	(114)	(159)	(114)	(159)	(114)	(159)
	3	(76)	n/a	n/a	n/a	0.43	n/a	n/a	n/a	0.10	n/a	0.20	n/a	n/a
	3-1/2	(89)	n/a	n/a	0.42	0.45	n/a	n/a	0.21	0.12	0.42	0.25	n/a	n/a
	4	(102)	n/a	n/a	0.45	0.48	n/a	n/a	0.26	0.15	0.45	0.30	n/a	n/a
ete	4-1/2	(114)	n/a	n/a	0.49	0.51	n/a	n/a	0.31	0.18	0.49	0.36	n/a	n/a
ncr	4-3/4	(121)	n/a	0.64	0.50	0.53	n/a	0.56	0.34	0.20	0.50	0.39	n/a	n/a
8	5	(127)	0.71	0.64	0.52	0.54	0.59	0.56	0.37	0.21	0.52	0.43	n/a	n/a
) (The second s	6	(152)	0.75	0.67	0.60	0.60	0.60	0.57	0.48	0.28	0.60	0.56	n/a	n/a
e €	7	(178)	0.79	0.70	0.70	0.67	0.62	0.58	0.61	0.35	0.70	0.67	n/a	n/a
Ë. Š	8	(203)	0.83	0.73	0.80	0.74	0.64	0.60	0.74	0.43	0.80	0.74	0.74	n/a
sta - (ι	9	(229)	0.88	0.76	0.90	0.82	0.65	0.61	0.89	0.51	0.90	0.82	0.78	n/a
s di	10	(254)	0.92	0.79	1.00	0.91	0.67	0.62	1.00	0.60	1.00	0.91	0.83	0.69
dge Jes	11	(279)	0.96	0.82		1.00	0.69	0.63		0.69		1.00	0.87	0.72
sk /e	12	(305)	1.00	0.85			0.70	0.64		0.79			0.91	0.76
thi (s)	14	(356)		0.91			0.74	0.67		1.00			0.98	0.82
b	16	(406)		0.96			0.77	0.69					1.00	0.87
acii	18	(457)		1.00			0.81	0.71						0.92
Spi	20	(508)					0.84	0.74						0.98
	24	(610)					0.91	0.79						1.00
	30	(762)					1.00	0.86						
	> 36	(914)						0.93						

Table 19 - Load adjustment factors for 1-in. diameter Hilti KWIK Bolt 3 stainless steel anchor in uncracked concrete^{1,2}

Linear interpolation not permitted. 1

When combining multiple load adjustment factors (e.g. for a 4 anchor pattern in a corner with thin concrete member) the design can become very conservative. To optimize the design, use Hilti PROFIS Anchor Design software or perform anchor calculation using design equations from ACI 318-14 Chapter 17. 2

3

Spacing factor reduction in shear, f_{AV} assumes an influence of a nearby edge. If no edge exists, then $f_{AV} = f_{AN}$. Concrete thickness reduction factor in shear, f_{HV} assumes an influence of a nearby edge. If no edge exists, then $f_{HV} = 1.0$. 4

If a reduction factor value is in a shaded cell, this indicates that this specific edge distance may not be permitted with a certain spacing (or vice versa). Check with table 13 and figure 3 of this section to calculate permissable edge distance, spacing and concrete thickness combinations. Use of Hilti KWIK Bolt 3 anchors with edge distance and spacing dimensions smaller than what is noted in this table is permitted.

Nominal				Tensio	n - φΝ _n		Shear - φV _n				
anchor	Effective	Nominal									
diameter	embed.	embed.	<i>f</i> ′ _c = 2,500 psi	<i>f</i> ′ _c = 3,000 psi	$f'_{c} = 4,000 \text{ psi}$	$f'_{c} = 6,000 \text{ psi}$	f' _c = 2,500 psi	<i>f</i> ′ _c = 3,000 psi	<i>f</i> ′ _c = 4,000 psi	$f'_{c} = 6,000 \text{ psi}$	
in.	in. (mm)	in. (mm)	lb (kN)	lb (kN)	lb (kN)	lb (kN)	lb (kN)	lb (kN)	lb (kN)	lb (kN)	
	2	2-1/4	2,205	2,415	2,790	3,420	2,375	2,605	3,005	3,680	
1/0	(51)	(57)	(9.8)	(10.7)	(12.4)	(15.2)	(10.6)	(11.6)	(13.4)	(16.4)	
1/2	3-1/4	3-1/2	4,250	4,655	5,375	6,585	9,845	10,785	12,450	15,250	
	(83)	(89)	(18.9)	(20.7)	(23.9)	(29.3)	(43.8)	(48.0)	(55.4)	(67.8)	
	3-1/8	3-1/2	4,200	4,605	5,315	6,510	9,280	10,165	11,740	14,380	
E /0	(79)	(89)	(18.7)	(20.5)	(23.6)	(29.0)	(41.3)	(45.2)	(52.2)	(64.0)	
5/6	4	4-3/8	5,860	6,420	7,415	9,080	13,440	14,725	17,000	20,820	
	(102)	(111)	(26.1)	(28.6)	(33.0)	(40.4)	(59.8)	(65.5)	(75.6)	(92.6)	
	3-3/4	4-1/4	5,665	6,205	7,165	8,775	12,200	13,365	15,430	18,900	
0/4	(95)	(108)	(25.2)	(27.6)	(31.9)	(39.0)	(54.3)	(59.5)	(68.6)	(84.1)	
3/4	5	5-1/2	6,615	7,245	8,365	10,245	18,785	20,575	23,760	29,100	
	(127)	(140)	(29.4)	(32.2)	(37.2)	(45.6)	(83.6)	(91.5)	(105.7)	(129.4)	

Table 20 - Hilti KWIK Bolt 3 hot-dip galvanized design strength with concrete/pullout failure in uncracked concrete^{1,2,3,4,5}

1 See section 3.1.8 to convert design strength value to ASD value.

2 Linear interpolation between embedment depths and concrete compressive strengths is not permitted.

3 Apply spacing, edge distance, and concrete thickness factors in tables 23 to 25 as necessary. Compare to steel values in table 21. The lesser of the values is to be used for the design.

4 Tabular values are for normal-weight concrete only. For lightweight concrete multiply design strength by λ_a as follows: for sand-lightweight, $\lambda = 0.68$; for all-lightweight, $\lambda = 0.60$

5 Tabular values are for static loads only. Seismic design is not permitted for uncracked concrete.

Table 21 - Steel design strength for Hilti KWIK Bolt 3 hot-dip galvanized anchors^{1,2}

Nominal anchor diameter in.	Nominal embedment in. (mm)	Tensile φN _{sa} ³ Ib (kN)	Shear φV _{sa} ⁴ Ib (kN)
	2-1/4		2,925
1/0	(57)	8,745	(13.0)
1/2	3-1/2	(38.9)	3,815
	(89)		(17.0)
	3-1/2		
E /0	(89)	13,515	7,565
5/6	4-3/8	(60.1)	(33.7)
	(111)		
	4-1/4		
0./4	(108)	19,080	11,050
3/4	5-1/2	(84.9)	(49.2)
	(140)		

1 See section 3.1.8 to convert design strength value to ASD value.

2 KWIK Bolt 3 carbon steel anchors are to be considered ductile steel elements.

3 Tensile $\phi N_{sa} = \phi A_{seN} f_{uta}$ as noted in ACI 318-14 Chapter 17.

4 Shear values determined by static shear tests with $\phi V_{sa} < \phi 0.60 A_{se,V} f_{uta}$ as noted in ACI 318-14 Chapter 17.

3.3.8

For a specific edge distance, the permitted spacing is calculated as follows:

$$s \ge s_{\min,2} + \frac{(s_{\min,1} - s_{\min,2})}{(c_{\min,1} - c_{\min,2})} (c - c_{\min,2})$$

Table 22 - Hot-dip galvanized KWIK Bolt 3 installation parameters¹

						Nomi	nal anch	or diame	eter d _o			
Setting information	Symbol	Units		1,	/2			5/8			3/4	
Effective minimum embedment	h	in.	2	2	3-	1/4	3-1/8		1	3-:	3/4	5
Enective minimum embedment	"ef	(mm)	(5	1)	(8	3)	(79)	(10	02)	(9	5)	(127)
Minimum member thickness	h	in.	4	6	6	8	5	6	8	6	8	8
Minimum member thickness	n _{min}	(mm)	(102)	(152)	(152)	(203)	(127)	(152)	(203)	(152)	(203)	(203)
		in.	3-1/4	2-5/8	2	2	2-1/4	2	1-78	3-	1/2	3-5/8
Case 1	C _{min,1}	(mm)	(83) (67)		(5	51)	(57)	(51)	(48)	(8)	9)	(92)
Case I	for s _{min 1}	in.	6-1/4	5-1/2	4-	7/8	5-1/4	5	4-3/4	7-	1/2	7-3/8
	2	(mm)	(158)	(140)	(12	24)	(133)	(127)	(121)	(19	91)	(187)
	_	in.	3-3/4	2-3/4	2-5/8	2-1/4	3-1/2	2-1/2	2-1/4	6-	1/2	4-3/4
Coop 2	C _{min,2}	(mm)	(95)	(70)	(67)	(57)	(89)	(64)	(57)	(165)		(121)
Case 2	for s _{min 2}	in.	3-1/8	2-3/4	2-3/8	2-1/8	2-1/2	2-1/8	2-1/8	4	4	3-7/8
	2	(mm)	(79)	(70)	(60)	(54)	(64)	(54)	(54)	(10	02)	(98)

1 Linear interpolation is permitted to establish an edge distance and spacing combination between Case 1 and Case 2. Linear interpolation for a specific edge .distance c, where $c_{min,1} < c < c_{min,2}$ will determine the permissible spacings.

Table 23 - Load adjustment factors for 1/2-in. diameter Hilti KWIK Bolt 3 hot-dip galvanized anchor in uncracked concrete^{1,2}

									E	Edge distar	nce in shea	r		
	1/2-in. KB	3	spacing	g factor	edge d	istance	spacing	g factor			II to an	d away	Conc. th	nickness
hot	dip galvar	nized	in ter	nsion	factor in	tension	in sh	ear ³	⊥ towa	rd edge	from	edge	factor ir	n shear⁴
unc	racked con	crete	f_{j}	AN	f_{s}	RN	f	AV.	f	av U	f_{1}	RV	f	HV
Embe	edment	in.	2-1/4	3-1/2	2-1/4	3-1/2	2-1/4	3-1/2	2-1/4	3-1/2	2-1/4	3-1/2	2-1/4	3-1/2
h	nom	(mm)	(57)	(89)	(57)	(89)	(57)	(89)	(57)	(89)	(57)	(89)	(57)	(89)
	2	(51)	n/a	n/a	n/a	0.38	n/a	n/a	n/a	0.10	n/a	0.20	n/a	n/a
	2-3/8	(60)	n/a	0.62	n/a	0.41	n/a	0.54	n/a	0.13	n/a	0.26	n/a	n/a
	2-1/2	(64)	n/a	0.63	n/a	0.42	n/a	0.55	n/a	0.14	n/a	0.28	n/a	n/a
	3	(76)	n/a	0.65	n/a	0.46	n/a	0.55	n/a	0.19	n/a	0.37	n/a	n/a
ete	3-1/8	(79)	0.76	0.66	n/a	0.48	0.64	0.56	n/a	0.20	n/a	0.40	n/a	n/a
JCre	3-1/4	(83)	0.77	0.67	0.67	0.49	0.64	0.56	0.79	0.21	0.79	0.42	n/a	n/a
cor	3-1/2	(89)	0.79	0.68	0.72	0.51	0.65	0.56	0.88	0.23	0.88	0.47	n/a	n/a
Ξ Ê	4	(102)	0.83	0.71	0.82	0.56	0.68	0.57	1.00	0.29	1.00	0.56	0.84	n/a
Ű (C	4-1/2	(114)	0.88	0.73	0.92	0.61	0.70	0.58		0.34		0.61	0.89	n/a
i, ng	5	(127)	0.92	0.76	1.00	0.67	0.72	0.59		0.40		0.67	0.94	n/a
staı - (ر	6	(152)	1.00	0.81		0.80	0.76	0.61		0.53		0.80	1.00	0.66
s (t	7	(178)	1.00	0.86		0.93	0.81	0.63		0.66		0.93		0.71
dge	8	(203)		0.91		1.00	0.85	0.64		0.81		1.00		0.76
ckr /e	9	(229)		0.96			0.89	0.66		0.97				0.81
th (s)	10	(254)		1.00			0.94	0.68		1.00				0.85
bu	11	(279)					0.98	0.70						0.89
aci	12	(305)					1.00	0.72						0.93
Sp	14	(356)						0.75						1.00
	16	(406)						0.79						
	18	(457)						0.83						
	20	(508)						0.86						
	> 24	(610)						0.93						

1 Linear interpolation not permitted.

When combining multiple load adjustment factors (e.g. for a 4 anchor pattern in a corner with thin concrete member) the design can become very conservative. 2 To optimize the design, use Hilti PROFIS Anchor Design software or perform anchor calculation using design equations from ACI 318-14 Chapter 17.

3

Spacing factor reduction in shear, f_{AV} assumes an influence of a nearby edge. If no edge exists, then $f_{AV} = f_{AN}$.

Concrete thickness reduction factor in shear, f_{HV} assumes an influence of a nearby edge. If no edge exists, then f_{HV} = 1.0. 4

If a reduction factor value is in a shaded cell, this indicates that this specific edge distance may not be permitted with a certain spacing (or vice versa). Check with table 22 and figure 4 of this section to calculate permissable edge distance, spacing and concrete thickness combinations. Use of Hilti KWIK Bolt 3 anchors with edge distance and spacing dimensions smaller than what is noted in this table is permitted.

Anchor Fastening Technical Guide Edition 19 | 3.0 ANCHORING SYSTEMS | 3.3.8 KWIK Bolt 3 (KB 3) CARBON AND STAINLESS STEEL SCREW ANCHOR 360 Hilti, Inc. (U.S.) 1-800-879-8000 | en español 1-800-879-5000 | www.hilti.com | Hilti (Canada) Corporation | www.hilti.com | 1-800-363-4458

									E	Edge distar	nce in shea	r		
	5/8-in. KB	3	Spacing	g factor	Edge d	istance	Spacing	g factor			II to an	d away	Conc. th	nickness
ho	t-dip galvar	nized	in ter	nsion	factor in	tension	in sh	near ³	⊥ towa	rd edge	from	edge	factor ir	n shear ⁴
unc	racked cor	ncrete	f_{\perp}	AN	f_{i}	RN	f_{\perp}	AV	f_{1}	RV	f	RV	f	HV
Embe	edment	in.	3-1/2	4-3/8	3-1/2	4-3/8	3-1/2	4-3/8	3-1/2	4-3/8	3-1/2	4-3/8	3-1/2	4-3/8
h) nom	(mm)	(89)	(111)	(89)	(111)	(89)	(111)	(89)	(111)	(89)	(111)	(89)	(111)
	2	(51)	n/a	n/a	n/a	0.34	n/a	n/a	n/a	0.08	n/a	0.17	n/a	n/a
	2-1/8	(54)	n/a	0.59	n/a	0.34	n/a	0.53	n/a	0.09	n/a	0.18	n/a	n/a
	2-1/4	(57)	n/a	0.59	0.38	0.35	n/a	0.54	0.14	0.10	0.27	0.20	n/a	n/a
	2-1/2	(64)	0.63	0.60	0.41	0.37	0.55	0.54	0.16	0.12	0.32	0.23	n/a	n/a
ete	3	(76)	0.66	0.63	0.45	0.40	0.56	0.55	0.21	0.15	0.42	0.30	n/a	n/a
JCre	3-1/2	(89)	0.69	0.65	0.50	0.44	0.57	0.56	0.26	0.19	0.50	0.38	n/a	n/a
S	4	(102)	0.71	0.67	0.54	0.47	0.58	0.56	0.32	0.23	0.54	0.47	n/a	n/a
Ē	4-1/2	(114)	0.74	0.69	0.60	0.51	0.59	0.57	0.38	0.28	0.60	0.51	n/a	n/a
υĒ	5	(127)	0.77	0.71	0.66	0.55	0.60	0.58	0.45	0.33	0.66	0.55	0.63	n/a
i. Se	6	(152)	0.82	0.75	0.79	0.63	0.62	0.59	0.59	0.43	0.79	0.63	0.69	0.62
staı) -	7	(178)	0.87	0.79	0.92	0.74	0.64	0.61	0.75	0.54	0.92	0.74	0.74	0.67
s (r	8	(203)	0.93	0.83	1.00	0.84	0.66	0.63	0.91	0.66	1.00	0.84	0.79	0.71
dge Jes	9	(229)	0.98	0.88		0.95	0.68	0.64	1.00	0.79		0.95	0.84	0.75
ck é	10	(254)	1.00	0.92		1.00	0.70	0.66		0.92		1.00	0.89	0.80
thi,	11	(279)		0.96			0.72	0.67		1.00			0.93	0.83
бu	12	(305)		1.00			0.74	0.69					0.97	0.87
aci	14	(356)					0.77	0.72					1.00	0.94
Ър	16	(406)					0.81	0.75						1.00
	18	(457)					0.85	0.78						
	20	(508)					0.89	0.82						
	24	(610)					0.97	0.88						
	> 30	(762)					1.00	0.97						

Table 24 - Load adjustment factors for 5/8-in. diameter Hilti KWIK Bolt 3 hot-dip galvanized anchor in uncracked concrete^{1,2}

Table 25 - Load adjustment factors for 3/4-in. diameter Hilti KWIK Bolt 3 hot-dip galvanized anchor in uncracked concrete^{1,2}

									E	dge distar	nce in shea	ar		
	3/4-in. KB	3	Spacing	g factor	Edge d	istance	Spacing	g factor			II to an	d away	Conc. th	nickness
hot	-dip galvar	nized	in ter	nsion	factor in	tension	in sh	iear ³	⊥ towa	rd edge	from	edge	factor ir	n shear ⁴
unci	racked con	icrete	f_{j}	AN	f_{i}	RN	f_{j}	AV	f	RV	$f_{\mathfrak{s}}$	- RV	f_{1}	HV
Embe	edment	in.	4-1/4	5-1/2	4-1/4	5-1/2	4-1/4	5-1/2	4-1/4	5-1/2	4-1/4	5-1/2	4-1/4	5-1/2
h	nom	(mm)	(108)	(140)	(108)	(140)	(108)	(140)	(108)	(140)	(108)	(140)	(108)	(140)
	3-1/2	(89)	n/a	n/a	0.41	n/a	n/a	n/a	0.22	n/a	0.41	n/a	n/a	n/a
	3-5/8	(92)	n/a	n/a	0.42	0.49	n/a	n/a	0.23	0.16	0.42	0.32	n/a	n/a
	3-7/8	(98)	n/a	0.63	0.44	0.51	n/a	0.55	0.26	0.18	0.44	0.35	n/a	n/a
Ð	4	(102)	0.68	0.63	0.45	0.52	0.57	0.55	0.27	0.18	0.45	0.37	n/a	n/a
cret	4-1/2	(114)	0.70	0.65	0.49	0.56	0.58	0.56	0.32	0.22	0.49	0.44	n/a	n/a
ouo	5	(127)	0.72	0.67	0.53	0.59	0.59	0.57	0.38	0.26	0.53	0.52	n/a	n/a
° (5-1/2	(140)	0.74	0.68	0.57	0.63	0.60	0.57	0.43	0.30	0.57	0.60	n/a	n/a
nn nn	6	(152)	0.77	0.70	0.62	0.67	0.60	0.58	0.49	0.34	0.62	0.67	0.65	n/a
).	7	(178)	0.81	0.73	0.72	0.75	0.62	0.59	0.62	0.43	0.72	0.75	0.70	n/a
- ir	8	(203)	0.86	0.77	0.82	0.84	0.64	0.61	0.76	0.52	0.82	0.84	0.75	0.66
dist (h)	9	(229)	0.90	0.80	0.92	0.95	0.66	0.62	0.91	0.62	0.92	0.95	0.79	0.70
le o	10	(254)	0.94	0.83	1.00	1.00	0.67	0.64	1.00	0.73	1.00	1.00	0.83	0.74
adç	11	(279)	0.99	0.87			0.69	0.65		0.84			0.87	0.77
)/e	12	(305)	1.00	0.90			0.71	0.66		0.96			0.91	0.81
g (s tl	14	(356)		0.97			0.74	0.69		1.00			0.99	0.87
Sing	16	(406)		1.00			0.78	0.72					1.00	0.93
pac	18	(457)					0.81	0.74						0.99
S	20	(508)					0.85	0.77						1.00
	24	(610)					0.92	0.82						
	30	(762)					1.00	0.91						
	> 36	(914)						0.99						

1 Linear interpolation not permitted.

2 When combining multiple load adjustment factors (e.g. for a 4 anchor pattern in a corner with thin concrete member) the design can become very conservative. To optimize the design, use Hilti PROFIS Anchor Design software or perform anchor calculation using design equations from ACI 318-14 Chapter 17.

3 Spacing factor reduction in shear, f_{AV} assumes an influence of a nearby edge. If no edge exists, then $f_{AV} = f_{AN}$.

4 Concrete thickness reduction factor in shear, f_{HV} assumes an influence of a nearby edge. If no edge exists, then f_{HV} = 1.0.

If a reduction factor value is in a shaded cell, this indicates that this specific edge distance may not be permitted with a certain spacing (or vice versa). Check with table 22 and figure 4 of this section to calculate permissable edge distance, spacing and concrete thickness combinations. Use of Hilti KWIK Bolt 3 anchors with edge distance and spacing dimensions smaller than what is noted in this table is permitted. 3.3.8

	-	-	1		ing to figure F	
Nominal				Loads accord	ing to ligure 5	
anchor	Effective	Nominal	Tensio	n - φN _n	Shear	·- φV _n
diameter	embed.	embed.	<i>f</i> ' _c = 3,000 psi	<i>f</i> ' _c = 4,000 psi	<i>f</i> ' _c = 3,000 psi	<i>f</i> ' _c = 4,000 psi
in.	in. (mm)	in. (mm)	lb (kN)	lb (kN)	lb (kN)	lb (kN)
1 /4	1-1/2	1-3/4	1,140	1,315	1,255	1,255
1/4	(38)	(44)	(5.1)	(5.8)	(5.6)	(5.6)
2 /0	2	2-3/8	1,460	1,685	1,845	1,845
3/0	(51)	(60)	(6.5)	(7.5)	(8.2)	(8.2)
	2	2-1/4				
1 /0	(51)	(57)	1,775	2,050	2,050	2,050
1/2	3-1/4	3-1/2	(7.9)	(9.1)	(9.1)	(9.1)
	(83)	(89)				
	3-1/8	3-1/2				
E /0	(79)	(89)	3,095	3,575	4,280	4,280
5/8	4	4-3/8	(13.8)	(15.9)	(19.0)	(19.0)
	(102)	(111)				

Table 26 - Hilti KWIK Bolt 3 carbon steel design strength in the soffit of uncracked lightweight concrete over metal deck^{1,2,3,4,5,6,8}

Table 27 - Hilti KWIK Bolt 3 stainless steel design strength in the soffit of uncracked lightweight concrete over metal deck^{1,2,3,4,5,7,8}

Nominal				Loads accord	ling to figure 5	
anchor	Effective	Nominal	Tensio	n - φΝ _n	Shear	r - φV _n
diameter	embed.	embed.	<i>f</i> ' _c = 3,000 psi	f' _c = 4,000 psi	f' _c = 3,000 psi	<i>f</i> ' _c = 4,000 psi
in.	in. (mm)	in. (mm)	lb (kN)	lb (kN)	lb (kN)	lb (kN)
1 /4	1-1/2	1-3/4	1,175	1,355	1,315	1,315
1/4	(38)	(44)	(5.2)	(6.0)	(5.8)	(5.8)
0./0	2	2-3/8	1,675	1,935	1,675	1,675
3/8	(51)	(60)	(7.5)	(8.6)	(7.5)	(7.5)
	2	2-1/4				
1 /0	(51)	(57)	1,265	1,460	1,135	1,135
1/2	3-1/4	3-1/2	(5.6)	(6.5)	(5.0)	(5.0)
	(83)	(89)				
	3-1/8	3-1/2				
- 10	(79)	(89)	2,880	3,325	3,700	3,700
5/8	4	4-3/8	(12.8)	(14.8)	(16.5)	(16.5)
	(102)	(111)				

1 See section 3.1.8 to convert design strength value to ASD value.

2 Linear interpolation between embedment depths and concrete compressive strengths is not permitted.

3 Tabular value is for one anchor per flute. Minimum spacing along the length of the flute is 3 x h_{ef} (effective embedment).

4 Tabular values are lightweight concrete and no additional reduction factor is needed.

5 No additional reduction factors for spacing or edge distance need to be applied.

6 Comparison to steel values in table 4 is not required. Values in tables 26 control.

7 Comparison to steel values in table 12 is not required. Values in tables 27 control.

8 Tabular values are for static loads only. Seismic design is not permitted for uncracked concrete.

Figure 5 - Installation in concrete over metal deck

DEISGN INFORMATION IN CONCRETE PER CSA A23.3

Limit State Design of anchors is described in the provisions of CSA A23.3-14 Annex D for post-installed anchors tested and assessed in accordance with ACI 355.2 for mechanical anchors and ACI 355.4 for adhesive anchors. This section contains the Limit State Design tables with unfactored characteristic loads that are based on the published loads in ICC Evaluation Services ESR-2302. These tables are followed by factored resistance tables. The factored resistance tables have characteristic design loads that are prefactored by the applicable reduction factors for a single anchor with no anchor-to-anchor spacing or edge distance adjustments for the convenience of the user of this document. All the figures in the previous ACI 318-14 Chapter 17 design section are applicable to Limit State Design and the tables will reference these figures.

For a detailed explanation of the tables developed in accordance with CSA A23.3-14 Annex D, refer to Section 3.1.8. Technical assistance is available by contacting Hilti Canada at (800) 363-4458 or at www.hilti.com.

Nominal anchor diameter in.	Nominal embedment in. (mm)	Tensile N _{sar} ³ Ib (kN)	Shear V _{sar} 4 lb (kN)
1//	1-11/16	1,440	1,045
1/4	(43)	(6.4)	(4.6)
2 /0	2-3/8	4,325	2,850
3/0	(60)	(19.2)	(12.7)
	2-1/4		4,230
1 /0	(57)	7,930	(18.8)
1/2	3-1/2	(35.3)	4,305
	(89)		(19.1)
	3-1/2		
E /0	(89)	12,255	7,795
5/6	4-3/8	(54.5)	(34.7)
	(111)		
	4-1/4		9,985
0/4	(108)	17,300	(44.4)
3/4	5-1/2	(77.0)	10,580
	(140)		(47.1)

Table 28 - Steel resistance for Hilti KWIK Bolt 3 carbon steel anchors^{1,2}

1 See Section 3.1.8 to convert factored resistance value to ASD value.

2 Hilti KWIK Bolt 3 carbon steel anchors are to be considered ductile steel elements.

3 Tensile $N_{sar} = A_{seN} \phi_s f_{uta} R$ as noted in CSA A23.3-14 Annex D.

4 Shear determined by static shear tests with $V_{sar} < A_{saV} \phi_s 0.6 f_{uta} R$ as noted in CSA A23.3-14 Annex D.

Table 29 - Hilti	KWIK Bol	t 3 cai	rbon st	eel design	information	in accordar	nce with C	SA A23.3-1	14 Annex D	1

Dosign parameter	Symbol	Linite	Units 1/4 2/9 1/2 5/8 3/4 423										Ref			
Design parameter	Symbol	Units	Nominal anchor diameter H 1/4 3/8 1/2 5/8 3/4 A23. 0.25 0.375 0.5 0.625 0.75										A23.3-14			
Anchor O D	d	in.	0.25	1/1 0/0 1/2 0/0 1/2 0.25 0.375 0.5 0.625 0.75 (6.4) (9.5) (12.7) (15.9) (19.1)												
	ua	(mm)	(6.4)	(9	.5)		(12	.7)			(15.9)			(19.1)		
Effective minimum	h	in.	1-1/2	2	2	2	2	3-1	1/4	3-1/8	4	4	3-3	3/4	5	
embedment ²	ef	(mm)	(38)	(5	1)	(5	1)	(8	3)	(79)	(10	02)	(9	5)	(127)	
Minimum concrete thickness ³	h.	in.	4	4	5	4	6	6	8	5	6	8	6	8	8	
	min	(mm)	(102)	(102)	(127)	(102)	(152)	(152)	(203)	(127)	(152)	(203)	(152)	(203)	(203)	
Critical edge distance	C _{ac}	in.	2-3/4	4-1/2	3-7/8	4-7/8	3-5/8	6-3/4	5-5/8	7-1/2	9-1/2	7-1/2	9-3/4	7-1/2	9-1/2	
	ac	(mm)	(70)	(114)	(98)	(124)	(92)	(1/1)	(143)	(191)	(241)	(191)	(248)	(191)	(241)	
	C _{min}	in.	1-3/8	2	1-1/2	2-1/8	2	1-5/8	1-5/8	2-1/4	1-3/4	1-3/4	2-3/4	2-5/8	2-1/2	
Minimum edge distance		(IIIII) in	(33)	(31)	(30)	(34)	(31)	(41)	(41)	5 1/4	(44)	(44)	67/9	6 1/2	6 2 /9	
	for s >	(mm)	(44)	(73)	(89)	(124)	(121)	(108)	(102)	(133)	(121)	(102)	(175)	(165)	(162)	
		in	1-1/4	1-3/4	1-3/4	2-1/2	2-1/4	2	1-7/8	2-3/8	2-1/8	2-1/8	3-3/4	3-3/8	2-1/2	
	S _{min}	(mm)	(32)	(44)	(44)	(64)	(57)	(2)	(48)	(60)	(54)	(54)	(95)	(86)	(64)	
Minimum anchor spacing		in.	1-5/8	2-3/8	2-3/8	2-5/8	2-3/8	2-1/4	2	3-1/8	2-3/8	2-1/4	3-3/4	3-3/8	6-3/8	
	for c >	(mm)	(41)	(60)	(60)	(67)	(60)	, (57)	(51)	(79)	(60)	(57)	(95)	(86)	(162)	
Minimum hole depth		in.	2	2-	5/8	2-	5/8	4	4	3-7/8	4-:	3/4	4-	1/2	5-3/4	
in concrete	n _°	(mm)	(50.8)	(6	57)	(6	7)	(10	02)	(98)	(12	21)	(11	17)	(146)	
Minimum specified	f	psi	84,800	84,	800		84,	800			84,800			84,800		
yield strength	ya	(N/mm ²)	(585)	(585) (585) (585) (585) (100,000) (100,000) (100,000) (100,000)												
Minimum specified	f	psi	106,000	6,000 106,000 106,000 106,000 106,000												
ultimate strength	uta	(N/mm ²)	(731)	(73	31)		(73	31)			(731)			(731)		
Effective tensile stress area	A	in ²	0.02	0.	06		0.	11			0.17			0.24		
	se,N	(mm²)	(12.9)	(38	3.7)		(71	.0)			(109.7)			(154.8)		
Steel embedment material		_							0.85							8/3
reinforcement	Ψ_s	-							0.00							0.4.0
Resistance modification	_															
factor for tension, steel failure	R	-							0.80							D.5.3
Besistance modification factor									0.75							
for shear, steel failure modes ³	К	-							0.75							D.5.3
Factored steel resistance	N	lb	1,440	4,3	325		7,9	30			12,255			17,300		D.6.1.2
in tension	sar	(kN)	(6.4)	(19	9.2)		(35	5.3)			(54.5)			(77.0)		
Factored steel resistance	V	lb	1,045	2,8	350	4,2	230	4,3	305		7,795		9,9	985	10,580	D.7.1.2
	sar	(kN)	(4.6)	(12	2.7)	(18	3.8)	(19	9.2)		(34.7)		(44	1.4)	(47.1)	
breakout resistance.	k	-							10							D.6.2.2
uncracked concrete	*c,uncr															
Modification factor for anchor			10								D 0 0 0					
concrete ⁴ concrete ⁴	Ψ _{c,N}	-							1.0							D.6.2.6
Anchor category	-	-							1							D.5.3 (c)
Concrete material									0.65							0 4 0
resistance factor	Ψ	-							0.00							0.4.2
Resistance modification																
concrete failure modes,	R	-							1.00							D.5.3 (c)
Condition B ⁵																L
Factored pullout resistance	N	lb (A)	1,100	,100 N/A N/A 4,745 NA NA 7,420							D.6.3.2					
III 20 IVIF a UNCLACKED CONCIELE	pr,und	(KIN)	(4.9)					(21	.1)						(33.0)	

1 Design information in this table is taken from ICC-ES ESR-2302, dated December 1, 2015, table 4, and converted for use with CSA A23.3-14 Annex D.

2 See figure 1 of this section.

3 The carbon steel KWIK Bolt 3 is considered a ductile steel element as defined by CSA A23.3-14 Annex D section D.2.

4 For all design cases, $\psi_{c,N} = 1.0$. The appropriate coefficient for breakout resistance for uncracked concrete ($k_{c,unc}$) must be used.

5 For use with the load combinations of CSA A23.3-14 chapter 8. Condition B applies where supplementary reinforcement in conformance with CSA A23.3-14 section D.5.3 is not provided, or where pullout or pryout strength governs. For cases where the presence of supplementary reinforcement can be verified, the resistance modification factors associated with Condition A may be used.

6 For all design cases, ψ_{c,P} = 1.0. NA (not applicable) denotes that this value does not control for design. See section 4.1.4 of ESR-2302 for additional information.

Nominal				Tensio	on - N _r			Shea	ar - V _r	
anchor	Effective	Nominal	<i>f</i> ' _c = 20 MPa	<i>f</i> ' _c = 25 MPa	<i>f</i> ' _c = 30 MPa	f' _c = 40 MPa	f' _c = 20 MPa	f' _c = 25 MPa	f' _c = 30 MPa	<i>f</i> ' _c = 40 MPa
diameter	embed.	embed.	(2,900psi)	(3,625 psi)	(4,350 psi)	(5,800 psi)	(2,900 psi)	(3,625 psi)	(4,350 psi)	(5,800 psi)
in.	in. (mm)	in. (mm)	lb (kN)	lb (kN)	lb (kN)	lb (kN)	lb (kN)	lb (kN)	lb (kN)	lb (kN)
1 //	1 1/2	1-11/16	1,100	1,230	1,350	1,560	1,530	1,710	1,875	2,165
1/4	(38)	43	(4.9)	(5.5)	(6.0)	(6.9)	(6.8)	(7.6)	(8.3)	(9.6)
2 /9	2	2-5/16	2,380	2,660	2,915	3,365	2,380	2,660	2,915	3,365
5/0	(51)	(59)	(10.6)	(11.8)	(13.0)	(15.0)	(10.6)	(11.8)	(13.0)	(15.0)
	2	2 3/8	2,380	2,660	2,915	3,365	2,380	2,660	2,915	3,365
1 /0	(51)	(60)	(10.6)	(11.8)	(13.0)	(15.0)	(10.6)	(11.8)	(13.0)	(15.0)
1/2	3-1/4	3 5/8	4,755	5,315	5,825	6,725	9,885	11,050	12,105	13,975
	(83)	(92)	(21.1)	(23.6)	(25.9)	(29.9)	(44.0)	(49.2)	(53.8)	(62.2)
-	3-1/8	3-9/16	4,590	5,130	5,620	6,490	9,175	10,260	11,240	12,980
E (0	(79)	(90)	(20.4)	(22.8)	(25.0)	(28.9)	(40.8)	(45.6)	(50.0)	(57.7)
5/6	4	4-7/16	6,730	7,525	8,245	9,520	13,465	15,055	16,490	19,040
	(102)	(113)	(29.9)	(33.5)	(36.7)	(42.3)	(59.9)	(67.0)	(73.4)	(84.7)
	3-3/4	4-5/16	6,050	6,765	7,410	8,555	12,100	13,530	14,820	17,115
2/4	(95)	(110)	(26.9)	(30.1)	(33.0)	(38.1)	(53.8)	(60.2)	(65.9)	(76.1)
3/4	4-3/4	5-9/16	7,415	8,290	9,080	10,485	17,395	19,450	21,305	24,600
	(121)	(141)	(33.0)	(36.9)	(40.4)	(46.6)	(77.4)	(86.5)	(94.8)	(109.4)

Table 30 - Hilti KWIK Bolt 3 carbon steel factored resistance with concrete/pullout failure in uncracked concrete^{1,2,3,4,5}

1 See section 3.1.8 to convert factored resistance value to ASD value.

2 Linear interpolation between embedment depths and concrete compressive strengths is not permitted.

3 Apply spacing, edge distance, and concrete thickness factors in tables 6 to 10 as necessary. Compare to the steel values in table 28. The lesser of the values is to be used for the design.

4 Tablular values are for normal-weight concrete only. For lightweight concrete multiply design strength by λ_a as follows: for sand-lightweight, $\lambda_a = 0.68$; for all-lightweight, $\lambda_a = 0.60$

5 Tabular values are for static loads only. Seismic design is not permitted for uncracked concrete.

Nominal	Nominal		
diameter	embedment	Tensile N 3	Shear V 4
in	in (mm)	Ib (kN)	lb (kN)
	1-11/16	1 565	1 070
1/4	(42.0)	(7.0)	(4.9)
	(42.9)	(7.0)	(4.0)
3/8	2-3/8	4,690	3,175
	(60.3)	(20.9)	(14.1)
	2-1/4		2,675
1/0	(57.2)	8,600	(11.9)
1/2	3-1/2	(38.3)	4,425
	(88.9)		(19.7)
	3-1/2		5,710
E /9	(88.9)	13,295	(25.4)
5/0	4-3/8	(59.1)	9,115
	(111.1)		(40.5)
	4-1/4		7,585
3/4	(108.0)	14,690	(33.7)
5/4	5-1/2	(65.3)	15,010
	(139.7)		(66.8)
	4-5/8		7,975
1	(117.5)	28,770	(35.5)
I	5-7/8	(128.0)	17,430
	(149.2)		(77.5)

Table 31 - Steel resistance for Hilti KWIK Bolt 3 stainless steel anchors^{1,2}

1 See Section 3.1.8 to convert factored resistance value to ASD value.

2 Hilti KWIK Bolt 3 carbon steel anchors are to be considered ductile steel elements.

3 Tensile $N_{_{sar}}$ = $A_{_{se,N}}\,\varphi_{_{s}}\,f_{_{uta}}\,R$ as noted in CSA A23.3-14 Annex D.

4 Shear determined by static shear tests with $V_{sar} < A_{se,V} \varphi_s 0.6 f_{uta} R$ as noted in CSA A23.3-14 Annex D.

Design personator	Cume la c l	Lingthe						No	minal a	anchor	diame	ter						Ref
Design parameter	Ioamye	Units	1/4	3/	/8		1,	/2			5/8			3/4		-	1	A23.3-14
Anohor O D	4	in.	0.25	0.3	75		0	.5			0.625			0.75			1	
Andhur U.D.	ua	(mm)	(6.4)	(9	.5)		(12	2.7)			(15.9)			(19.1)	·	(25	5.4)	
Effective minimum	h	in.	1-1/2	2	2	:	2	3-*	1/4	3-1/8	4	1	3-:	3/4	5	4	5-1/4	
embedment	ef	(mm)	(38)	(5	1)	(5	51)	(8	3)	(79)	(10)2)	(9	95)	(127)	(102)	(133)	
Minimum concrete thick-	h _{min}	in.	4	4	5	4	6	6	8	5	6	8	6	8	8	8		
11655		(mm)	(102)	(102)	(127)	(102)	(152)	(152)	(203)	(127)	(152)	(203)	(152)	(203)	(203)	(203)	(254)	
Critical edge distance	C _{ac}	(mm)	(76)	(111)	(98)	(124)	(102)	(171)	(146)	(187)	(241)	(191)	(267)	(235)	(248)	(254)	(279)	
		in.	1-3/8	2	1-5/8	2-1/2	1.875	1-5/8	1-5/8	3-1/4	2-1/2	2-1/2	3-1/4	3	2-7/8	3-1/2	3	
	C _{min}	(mm)	(35)	(51)	(41)	(64)	(48)	(41)	(41)	(83)	(64)	(64)	(83)	(76)	(73)	(89)	(76)	
Minimum edge distance	6	in.	1-3/4	4	3-3/8	5	4-5/8	4-1/2	4.25	5-5/8	5-1/4	5	7	6-7/8	6-5/8	6-3/4	6-3/4	
	tor s >	(mm)	(44)	(102)	(86)	(127)	(117)	(114)	(108)	(143)	(133)	(127)	(178)	(175)	(168)	(171)	(171)	
	9	in.	1-1/4	2	1-3/4	2-1/2	2-1/4	2	1-7/8	3-1/8	2-1/8	2-1/8	4	3-1/2	3-1/2	5	4-3/4	
Minimum anchor	min	(mm)	(32)	(51)	(44)	(64)	(57)	(2)	(48)	(79)	(54)	(54)	(102)	(89)	(89)	(127)	(121)	
spacing	for c >	in.	1-5/8	3-1/4	2-1/2	2-7/8	2-3/8	2-3/8	2-1/8	3-7/8	3	2-3/4	4-1/8	3-3/4	3-3/4	4-1/4	3-3/4	
		(mm)	(41)	(83)	(64)	(73)	(60)	(60)	(54)	(98)	(76)	(70)	(105)	(95)	(95)	(108)	(95)	
Minimum hole depth	h	in.	2	2-8	5/8 7)	2-	5/8	(10	1	3-7/8	4-:	3/4 01)	4-	1/2 17)	(146)	5	6-3/4	
Misissum an sifi al	-	(mm)	(30.8) 84 800	0)	<u>/)</u> nnn	(0	02	000)2)	(98)	02 000	21)	(1	76.000	(140)	76	000	
vield strenath	f _{ya}	(N/mm ²)	(585)	(63	300 34)		(6:	34)			(634)			(524)		(5)	24)	
Minimum specified		psi	115.000	(333) (334) (334) (324) (324) 15,000 115,000 115,000 90,000 90000														
ultimate strength	f _{uta}	(N/mm ²)	(793)	(79	, 93)		(79	93)			(793)			(621)		(62	21)	
Effective tensile		in ²	0.02	0.	06		0.	11			0.17			0.24		0.	47	
stress area	A _{se,N}	(mm²)	(12.9)	(38	3.7)		(71	.0)			(109.7)			(154.8)		(15	4.8)	
Steel embedment material resistance factor for reinforcement	φ _s	-								0.85								8.4.3
Resistance modification factor for tension, steel failure modes ³	R	-								0.80								D.5.3
Resistance modification factor for shear, steel fail- ure modes ³	R	-								0.75								D.5.3
Factored steel	N	lb	1,565	4,6	90		8,6	600			13,295			14,690		28,	770	D.6.1.2
resistance in tension	sar	(kN)	(7.0)	(20).9)		(38	3.3)			(59.1)			(65.3)	r	(12	8.0)	
Factored steel	V	lb	1,070	3,1	75	2,6	675	4,4	25	5,710	9,1	15	7,5	585	15,010	7,975	17,430	D.7.1.2
Coeff. for factored concrete breakout resistance, uncracked	k _{c,uncr}	(KIN) -	(4.8) (14.1) (11.9) (19.7) (25.4) (66.8) (33.7) (66.8) (35.5) (77.5) 10								D.6.2.2							
Modification factor for anchor resistance, tension, uncracked concrete ⁴	Ψ _{c,N}	-	1.0 D.6										D.6.2.6					
Anchor category	-	-	2							1	l							D.5.3 (c)
Concrete material resistance factor	φ _c	-								0.65								8.4.2
Resistance modification factor for tension and shear, concrete failure modes, Condition B ⁵	R	-	0.85							1.0	00							D.5.3 (c)
Factored pullout resistance in 20 MPa uncracked concrete ⁶	N _{pr,uncr}	lb (kN)	1,100 (4,9)	2,0 (9.)70 .2)	2,3	315).3)	4,2	25 8.8)	4,360	5,4 (24	.85 .4)	6,0	000 6.7)	7,600	NA	10,905	D.6.3.2

. . .

Design information in this table is taken from ICC-ES ESR-2302, dated December 1, 2015, table 4, and converted for use with CSA A23.3-14 Annex D. 1

2 See figure 1 of this section.

3

The stainless steel KWIK Bolt 3 is considered a ductile steel element as defined by CSA A23.3-14 Annex D section D.2. For all design cases, $\psi_{c,N} = 1.0$. The appropriate coefficient for breakout resistance for uncracked concrete ($k_{c,unc}$) must be used. 4

5 For use with the load combinations of CSA A23.3-14 chapter 8. Condition B applies where supplementary reinforcement in conformance with CSA A23.3-14 section D.5.3 is not provided, or where pullout or pryout strength governs. For cases where the presence of supplementary reinforcement can be verified, the resistance modification factors associated with Condition A may be used.

6 For all design cases, $\psi_{c,P}$ = 1.0. NA (not applicable) denotes that this value does not control for design. See section 4.1.4 of ESR-2302 for additional information.

Tension - N Shear - V Nominal Nominal $f'_{o} = 20 \text{ MPa} f'_{o} = 25 \text{ MPa}$, = 30 MPa | f', = 40 MPa | f', = 20 MPa | f', = 25 MPa $f'_{0} = 30 \text{ MPa} | f'_{0} = 40 \text{ MPa}$ Effective f' anchor (2,900 psi) diameter embed. embed. (2,900psi) (3,625 psi) (4,350 psi) (5,800 psi) (3,625 psi) (4,350 psi) (5,800 psi) lb (kN) in. (mm) in. (mm) lb (kN) in. 1 1/2 1-11/16 930 1.040 1,140 1.315 1,300 1,455 1.595 1,840 1/4(38)43 (4.1)(4.6)(5.1)(5.8)(5.8)(6.5)(7.1)(8.2) 2 2-5/16 2,080 2,325 2,545 2,940 2,380 2,660 2,915 3,365 3/8 (51) (10.6) (59) (9.2) (10.3)(11.3)(13.1)(11.8)(13.0)(15.0) 2 2 3/8 2,315 2,585 2,835 3,275 2,380 2,660 2,915 3,365 (51)(60)(10.3)(11.5)(12.6)(14.6)(10.6)(11.8)(13.0)(15.0)1/2 3-1/4 3 5/8 4,220 4,715 5,165 5,965 9,885 11,050 12,105 13,975 (26.5) (18.8)(23.0)(44.0)(49.2)(83) (92) (21.0)(53.8)(62.2) 3-1/8 3-9/16 4,360 4,875 5,340 6,165 9,175 10,260 11,240 12,980 (79) (90) (19.4) (21.7)(23.8) (27.4)(40.8) (45.6) (50.0) (57.7)5/8 4 4-7/16 5,480 6,125 6,710 7,750 13,465 15,055 16,490 19,040 (102)(113)(24.4)(27.2)(29.8)(34.5)(59.9)(67.0)(73.4)(84.7)6,000 6,705 3-3/4 4-5/16 7,345 8,480 12,100 13,530 14,820 17,115 (110) (26.7)(29.8)(32.7) (37.7)(53.8)(60.2) (65.9)(95) (76.1)3/4 4-3/4 5-9/16 7,590 8,485 9,295 10,730 17,395 19,450 21,305 24,600 (121) (141)(33.8) (37.7) (41.3)(47.7)(77.4)(86.5)(94.8) (109.4)6,730 7,525 9,520 13,465 15,055 4-5/16 8,245 16,490 19,040 Δ (102)(110)(29.9)(33.5)(36.7)(42.3)(59.9)(67.0)(73.4)(84.7)1 5 3/4 5-9/16 10,895 12,180 13,340 15,405 23,055 25,780 28,240 32,610 (146)(141)(48.5)(54.2)(59.3)(68.5)(102.6)(114.7)(125.6)(145.0)

Table 33 - Hilti KWIK Bolt 3 stainless steel factored resistance with concrete/pullout failure in uncracked concrete^{1,2,3,4,5}

1 See section 3.1.8 to convert factored resistance value to ASD value.

2 Linear interpolation between embedment depths and concrete compressive strengths is not permitted.

3 Apply spacing, edge distance, and concrete thickness factors in tables 14 to 19 as necessary. Compare to the steel values in table 31. The lesser of the values is to be used for the design.

4 Tablular values are for normal-weight concrete only. For lightweight concrete multiply design strength by λ_a as follows: for sand-lightweight, $\lambda_a = 0.68$; for all-lightweight, $\lambda_a = 0.60$

5 Tabular values are for static loads only. Seismic design is not permitted for uncracked concrete.

Table 34 - Steel resistance for Hilti KWIK Bolt 3 hot-dip galvanized carbon steel anchors^{1,2}

Nominal anchor diameter in.	Nominal embedment in. (mm)	Tensile N _{sar} ³ Ib (kN)	Shear V _{sar} Ib (kN)
	2-1/4		2,870
1/0	(57)	7,930	(12.8)
1/2	3-1/2	(35.3)	3,740
	(89)		(16.6)
	3-1/2		
E /0	(89)	12,255	7,415
5/6	4-3/8	(54.5)	(33.0)
	(111)		
	4-1/4		
0.4	(108)	17,300	10,840
3/4	5-1/2	(77.0)	(48.2)
	(140)		

1 See section 3.1.8 to convert design strength value to ASD value.

2 KWIK Bolt 3 hot-dip galvanized carbon steel anchors are to be considered ductile steel elements.

3 Tensile $N_{sar} = A_{seN} \phi_s f_{uta} R$ as noted in ACI 318-14 Chapter 17.

4 Shear values determined by static shear tests with V_{sar} < A_{sev} ϕ_s 0.6 f_{uta} R as noted in ACI 318-14 Chapter 17.

3.3.8

*

Table 35 - Hilti KWIK Bolt 3 hot-dip galvanized carbon steel design information in accordance with CSA A23.3-14 Annex D1

Design parameter	Symbol	Units									Ref		
	-		1/2				5/8			3/4		A23.3-14	
Anchor O.D.	d	in.	0.5				0.625			0.75			
	a	(mm)		(12	2.7)		(15.9)			(19.1)			
Effective minimum embedment ²	h _a	in.	2	2	3-1	1/4	3-1/8	4		3-	3/4	4-3/4	
	ei	(mm)	(5	51)	(8	3)	(79)	(10	02)	(9	95)	(121)	
Minimum concrete thickness	h,	in.	4	6	6	8	5	6	8	6	8	8	
	min	(mm)	(102)	(152)	(152)	(203)	(127)	(152)	(203)	(152)	(203)	(203)	
Critical edge distance	с	in.	4-7/8	3-5/8	7-1/2	5.75	8	9-1/2	8	9-3/4	7-1/2	9-1/2	
	ac	(mm)	(124)	(92)	(191)	(146)	(194)	(241)	(197)	(248)	(191)	(241)	L
	c	in.	2-	7/8	2-1	1/8	3-1/4	2-3	3/8	4-	1/4	4	
Minimum edge distance	min	(mm)	(7	(3)	(5	4)	(83)	(6	0)	(1	08)	(102)	
	for s >	in.	5-	3/4	5-1	1/4	5-1/2	5-1	1/2	1	0	8-1/2	
		(mm)	(14	46)	(13	33)	(140)	(14	10)	(2	54)	(216)	
		in.	2-	7/8	2	2	2-3/4	2-3	3/8		5	4	
Minimum anchor spacing	9 _{min}	(mm)	(7	(3)	(5	1)	(70)	(6	0)	(1)	27)	(102)	
Minimum anchor spacing	for c >	in.	4-	1/2	3-1	I/4	4-1/8	4-	1/4	9-	1/2	7	
	101.0 2	(mm)	(1	14)	(8	3)	(105)	(10	08)	(2-	41)	(178)	
Minimum halo donth in concrete	h	in.	2-	5/8	4	1	3-3/4	4-3	3/4	4-	1/2	5-3/4	
Minimum noie depth in concrete	11,0	(mm)	(6	57)	(10	02)	(98)	(121)		(1	17)	(146)	
Minimum aposified yield strength	f	psi		92,	000			92,000			76,125		
Minimum specified yield strength	ya	(N/mm ²)		(63	34)		(634)				(525)		
Minimum encotied ultimate strongth	4	psi		115	,000			115,000			101,500		
Minimum specified ultimate strength	uta	(N/mm ²)		(79	93)			(793)			(700)		
		in²		0.1	01			0.162			0.237		
Effective tensile stress area	A _{se,N}	(mm ²)		(65	5.0)			(104.6)			(152.8)		
Steel embedment material resistance factor for reinforcement	φ _s	-					0.	85					8.4.3
Resistance modification factor for tension, steel failure modes ⁴	R	-					0.	80					D.5.3
Resistance modification factor for shear, steel failure modes ⁴	R	-					0.	75					D.5.3
Factored steel registered in tension	N	lb		7,9	930			12,255			17,300		Dete
Factored steel resistance in tension	IN _{sar}	(kN)		(35	5.3)			(54.5)			(77.0)		D.6.1.2
	N	lb	2,8	370	3,7	40		7,415			10,840		D 7 1 0
Factored steel resistance in snear	V sar	(kN)	(12	2.8)	(16	6.6)		(33.0)			(48.2)		D.7.1.2
Coefficient for factored concrete breakout resistance, uncracked concrete	k _{c,uncr}	-	10						D.6.2.2				
Modification factor for anchor resistance, tension, uncracked concrete ⁴	$\Psi_{c,N}$	-	1.00					D.6.2.6					
Anchor category	-	-	- 1					D.5.3 (c)					
Concrete material resistance factor	φ	-	- 0.65						8.4.2				
Resistance modification factor for tension and shear, concrete failure modes, Condition B ⁵	R	-					1.	00					D.5.3 (c)
Factored pullout resistance in 20 MPa uncracked concrete ⁶	N _{pr,uncr}	lb (kN)	Ŋ	/A	4,5 (20	85 .4)	4,540 (20.2)	6,3 (28	815 8.1)	N	IA	7,125 (31.7)	D.6.3.2

Design information in this table is taken from ICC-ES ESR-2302, dated December 1, 2015, table 4, and converted for use with CSA A23.3-14 Annex D. 1

2 See figure 1 of this section.

The hot-dip galvanized carbon steel KWIK Bolt 3 is considered a ductile steel element as defined by CSA A23.3-14 Annex D section D.2. 3

4

For all design cases, $\psi_{c,N} = 1.0$. The appropriate coefficient for breakout resistance for uncracked concrete ($k_{c,uncr}$) must be used. For use with the load combinations of CSA A23.3-14 chapter 8. Condition B applies where supplementary reinforcement in conformance with CSA A23.3-14 5 section D.5.3 is not provided, or where pullout or pryout strength governs. For cases where the presence of supplementary reinforcement can be verified, the resistance modification factors associated with Condition A may be used.

6 For all design cases, ψ_{eP} = 1.0. NA (not applicable) denotes that this value does not control for design. See section 4.1.4 of ESR-2302 for additional information.

Nominal				Tensio	on - N _r		Shear - V _r				
anchor	Effective	Nominal	f'_ = 20 MPa	f'_ = 25 MPa	f'_ = 30 MPa	f'_ = 40 MPa	f'_ = 20 MPa	f'_ = 25 MPa	f'_ = 30 MPa	f'_ = 40 MPa	
diameter	embed.	embed.	(2,900psi)	(3,625 psi)	(4,350 psi)	(5,800 psi)	(2,900 psi)	(3,625 psi)	(4,350 psi)	(5,800 psi)	
in.	in. (mm)	in. (mm)	lb (kN)	lb (kN)	lb (kN)	lb (kN)	lb (kN)	lb (kN)	lb (kN)	lb (kN)	
	2	2 3/8	2,380	2,660	2,915	3,365	2,380	2,660	2,915	3,365	
1 /0	(51)	(60)	(10.6)	(11.8)	(13.0)	(15.0)	(10.6)	(11.8)	(13.0)	(15.0)	
1/2	3-1/4	3 5/8	4,580	5,120	5,610	6,480	9,885	11,050	12,105	13,975	
	(83)	(92)	(20.4)	(22.8)	(25.0)	(28.8)	(44.0)	(49.2)	(53.8)	(62.2)	
	3-1/8	3-9/16	4,535	5,070	5,555	6,410	9,175	10,260	11,240	12,980	
E /0	(79)	(90)	(20.2)	(22.5)	(24.7)	(28.5)	(40.8)	(45.6)	(50.0)	(57.7)	
5/6	4	4-7/16	6,315	7,060	7,730	8,930	13,465	15,055	16,490	19,040	
	(102)	(113)	(28.1)	(31.4)	(34.4)	(39.7)	(59.9)	(67.0)	(73.4)	(84.7)	
	3-3/4	4-5/16	6,050	6,765	7,410	8,555	12,100	13,530	14,820	17,115	
2/4	(95)	(110)	(26.9)	(30.1)	(33.0)	(38.1)	(53.8)	(60.2)	(65.9)	(76.1)	
5/4	4-3/4	5-9/16	7,130	7,975	8,735	10,085	17,395	19,450	21,305	24,600	
	(121)	(141)	(31.7)	(35.5)	(38.9)	(44.9)	(77.4)	(86.5)	(94.8)	(109.4)	

 Table 36 - Hilti KWIK Bolt 3 hot-dip galvanized carbon steel factored resistance with concrete / pullout failure

 in uncracked concrete^{1,2,3,4,5}

1 See section 3.1.8 to convert factored resistance value to ASD value.

2 Linear interpolation between embedment depths and concrete compressive strengths is not permitted.

3 Apply spacing, edge distance, and concrete thickness factors in tables 23 to 25 as necessary. Compare to the steel values in table 34. The lesser of the values is to be used for the design.

4 Tablular values are for normal-weight concrete only. For lightweight concrete multiply design strength by λ_a as follows: for sand-lightweight, $\lambda_a = 0.68$; for all-lightweight, $\lambda_a = 0.60$

5 Tabular values are for static loads only. Seismic design is not permitted for uncracked concrete.

 Table 37 - Hilti KWIK Bolt 3 carbon steel factored resistance in the soffit

 of uncracked lightweight concrete over metal deck^{1,2,3,4,5,6,7}

			Loads according to figure 5					
Nominal			Tensio	on - N _r	Shear - V _r			
anchor diameter in.	Effective embed. in. (mm)	Nominal embed. in. (mm)	f' _c = 20 MPa (2,900 psi) Ib (kN)	f' _c = 30 MPa (4,350 psi) Ib (kN)	f' ≥ 20 MPa (2,900 psi) Ib (kN)			
1/4	1-1/2	1-11/16	1,120	1,370	1,230			
1/4	(38)	(43)	(5.0)	(6.1)	(5.5)			
2/0	2	2-5/16	1,435	1,755	1,810			
3/0	(51)	(59)	(6.4)	(7.8)	(8.1)			
	2	2-3/8						
1/0	(51)	(60)	1,745	2,135	2,010			
1/2	3-1/4	3-5/8	(7.8)	(9.5)	(8.9)			
	(83)	(92)						
	3-1/8	3-9/16						
E /0	(79)	(90)	3,045	3,730	4,200			
5/8	4	4-7/16	(13.5)	(16.6)	(18.7)			
	(102)	(113)						

1 See section 3.1.8 to convert design strength value to ASD value.

2 Linear interpolation between embedment depths and concrete compressive strengths is not permitted.

3 Tabular value is for one anchor per flute. Minimum spacing along the length of the flute is 3 x h_{ef} (effective embedment).

4 Tabular value is for lightweight concrete and no additional reduction factor is needed.

5 No additional reduction factors for spacing or edge distance need to be applied.

6 Comparison of the tabular values to the steel strength is not necessary. Tabular values control.

7 Tabular values are for static loads only. Seismic design is not permitted for uncracked concrete.

*

Table 38 - Hilti KWIK Bolt 3 stainless steel factored resistance in the soffit of uncracked lightweight concrete over metal deck^{1,2,3,4,5,6,7}

*

			Loads according to figure 5					
Nominal			Tensio	on - N _r	Shear - V _r			
anchor diameter in.	Effective embed. in. (mm)	Nominal embed. in. (mm)	f' _c = 20 MPa (2,900 psi) Ib (kN)	f' _c = 30 MPa (4,350 psi) Ib (kN)	f' _c ≥ 20 MPa (2,900 psi) Ib (kN)			
1/4	1-1/2	1-11/16	980	1,200	1,290			
1/4	(38)	(43)	(4.4)	(5.3)	(5.7)			
2/0	2	2-5/16	1,650	2,020	1,645			
3/0	(51)	(59)	(7.3)	(9.0)	(7.3)			
	2	2-3/8						
1/0	(51)	(60)	1,245	1,520	1,110			
1/2	3-1/4	3-5/8	(5.5)	(6.8)	(4.9)			
	(83)	(92)						
	3-1/8	3-9/16						
F /0	(79)	(90)	2,830	3,465	3,625			
5/8	4	4-7/16	(12.6)	(15.4)	(16.1)			
	(102)	(113)						

1 See section 3.1.8 to convert design strength value to ASD value.

2 Linear interpolation between embedment depths and concrete compressive strengths is not permitted.

3 Tabular value is for one anchor per flute. Minimum spacing along the length of the flute is 3 x h_{et} (effective embedment).

- 4 Tabular value is for lightweight concrete and no additional reduction factor is needed.
- 5 No additional reduction factors for spacing or edge distance need to be applied.
- 6 Comparison of the tabular values to the steel strength is not necessary. Tabular values control.
- 7 Tabular values are for static loads only. Seismic design is not permitted for uncracked concrete.

Figure 5 - Installation in concrete over metal deck

DESIGN INFORMATION IN MASONRY

Nominal anchor diameter	Nominal e	mbedment	Minimun from ed	Minimum distance from edge of wall		Tension		Shear Ib (kN)	
in.	in.	(mm)	in.	(mm)	lb	(kN)	lb	(kN)	
	1 1 /0	(20)	4	(102)	150	(0,7)	200	(1 7)	
1 //	1-1/0	(29)	12	(305)	150	(0.7)	300	(1.7)	
1/4	2 (51)	(51)	4	(102)	540	(2, 4)	115	(2.0)	
		(51)	12	(305)	540	(2.4)	445	(2.0)	
	1 5 /0	(41)	4	(102)	320	(1.4)	735	(3.3)	
3 /9	1-5/6	(41)	12	(305)	340	(1.5)	940	(4.2)	
3/0	0 1 /0	(6.4)	4	(102)	790	(2, 5)	1,010	(4.5)	
	2-1/2	(64)	12	(305)	780	(3.5)	1,395	(6.2)	
	2 1 //	(57)	4	(102)	630	(2.8)	830	(3.7)	
1/0	2-1/4	(57)	12	(305)	665	(3.0)	1,465	(6.5)	
1/2	2 1 /0	(90)	4	(102)	005	(4.0)	1,080	(4.8)	
	3-1/2	(69)	12	(305)	905	(4.0)	2,375	(10.6)	
	0.2/4	(70)	4	(102)	815	(3.6)	890	(4.0)	
E /9	2-3/4	(70)	12	(305)	865	(3.8)	2,165	(9.6)	
5/8	4	(102)	4	(102)	1,240	(5.5)	970	(4.3)	
	4	(102)	12	(305)	1,295	(5.8)	2,770	(12.3)	
	0.1/4	(80)	4	(102)	1.025	(4.6)	785	(3.5)	
2/4	3-1/4 (83)		12	(305)	1,035	(4.0)	3,135	(13.8)	
3/4	4.2/4 (101)		4	(102)	1,645	(7.3)	825	(3.7)	
	4-3/4	(121)	12	(305)	1,710	(7.6)	3,305	(14.7)	

Table 39 - Carbon steel Hilti KWIK Bolt 3 allowable loads in grout-filled concrete masonry units^{1, 2, 3, 4, 5, 6}

Table 40 - Carbon steel Hilti KWIK Bolt 3 allowable loads for anchors installed in top of grout-filled concrete masonry wall¹

Nominal anchor						Sh	ear	
diameter	Nominal er	mbedment	Ter	ision	\ \	/ ₁	١	/ ₂
in.	in.	(mm)	lb	(kN)	lb	(kN)	lb	(kN)
1/2	3	(76)	645	(2.9)	310	(1.4)	615	(2.7)
5/8	3-1/2	(89)	850	(3.8)	310	(1.4)	615	(2.7)

1 All values are for anchors installed in fully grouted concrete masonry with minimum masonry prism strength of 1,500 psi. Concrete masonry units may be lightweight, medium-weight or normal-weight conforming to ASTM C90. Allowable loads are calculated using safety factor of 4.

2 Anchors must be installed a minimum of 1-3/8 inch from any vertical mortar joint.

3 Anchor locations are limited to one per masonry cell.

4 Embedment depth is measured from the outside face of the concrete masonry unit.

5 Linear interpolation to determine load values at intermediate edge distances is permitted.

Figure 6 - Installation in grout-filled concrete masonry unit

Figure 7 - Hilti KWIK Bolt 3 installed in the top of masonry walls

DESIGN INFORMATION FOR COUNTERSUNK KWIK BOLT 3

	Nominal			f' _c = 3000 psi (20.7 MPa)					
Anchor Material	anchor diameter	Embedment		Ten	sion	Shear ²			
Wateria	in.	in. (in. (mm)		lb (kN)		lb (kN)		
Carbon Stool	1/4	1-1/8	(29)	365	(1.6)	350	(1.6)		
Carbon Steer	3/8	1-5/8	(41)	810	(3.6)	750	(3.3)		
Chaimlana Chaol	1/4	1-1/8	(29)	320	(1.4)	500	(2.2		
Stainless Steel	3/8	1-5/8	(41)	670	(3.0)	1330	(5.9)		

Table 41 - Countersunk Hilti KWIK Bolt 3 allowable loads in normal-weight concrete¹

1 Allowable loads based on using a safety factor of 4.0.

2 Shear values acting thru threads of anchor bolt. If acting through the empty shell, reduce loads by 70%.

INSTALLATION INSTRUCTIONS

Installation Instructions For Use (IFU) are included with each product package. They can also be viewed or downloaded online at www.hilti.com. Because of the possibility of changes, always verify that downloaded IFU are current when used. Proper installation is critical to achieve full performance. Training is available on request. Contact Hilti Technical Services for applications and conditions not addressed in the IFU.

ORDERING INFORMATION

KWIK Bolt 3 anchor product line

	Leng	th (ℓ)	Thread le	ngth (ℓ_{th})	ID					
Size	in.	(mm)	in.	(mm)	stamp	Box	Carbon steel	304 SS	316 SS	HDG
1/4 x 1-3/4	1-3/4	(44)	3/4	(18)	А		•	•		
1/4 x 2-1/4	2-1/4	(57)	7/8	(22)	В		•	٠	•	
1/4 - 0 1/4	0.1/4	(00)	2	(51)	D	100	•	•		
1/4 X 3- 1/4	3-1/4	(03)	7/8	(22)	D				•	
1/4 x 4-1/2	4-1/2	(114)	2-7/8	(75)	G		•	٠		
3/8 x 2-1/4	2-1/4	(57)	7/8	(22)	В		•	•		
2/0 x 2	2	(76)	1-1/4	(32)	П				•	
3/6 X 3	3	(70)	1-1/2	(40)	D		•	•		
2/2 - 2 2/4	2 2/4	(05)	1-1/4	(32)	_	50			•	
5/8 X 5-5/4	3-3/4	(93)	2-1/4	(59)	L		•	•		
3/8 x 5	5	(127)	3-1/2	(91)	Н		•	•		
3/8 x 7	7	(178)	5-1/2	(142)	L		•	•		
1/2 x 2-3/4	2-3/4	(70)	1-1/4	(33)	С		•	•		
1/2 x 3-3/4	3-3/4	(95)	1-5/16	(35)	F				•	
1/2 x 3-3/4	3-3/4	(90)	2-3/16	(56)	L	ļ	•	•		•
1/2 x / 1/2	4 1/0	(114)	1-5/16	(35)	G	25			•	
1/2 × 4- 1/2	4-1/2	(114)	2-7/8	(75)	G	25	•	•		•
1/0 x E 1/0	E 1/0	(140)	1-5/16	(35)					•	
1/2 x 5-1/2	5-1/2	(140)	3-3/4	(96)			•	٠		•
1/2 x 7	7	(178)	4-3/4	(121)	L		•	٠		•
5/8 x 3-3/4	3-3/4	(95)	1-1/2	(41)	E		•	٠	•	
E/Q x A 2/A	4 2/4	(101)	1-1/2	(41)	6				•	
5/6 X 4-3/4	4-3/4	(121)	2-3/4	(70)	G		•	٠		•
E/9 x 6	6	(150)	1-1/2	(41)		15			•	
5/6 X 0	0	(152)	4	(102)	J	15	•	٠		•
5/8 x 7	7	(178)	4-3/4	(121)]	•			
5/8 x 8-1/2	8-1/2	(216)	6-1/2	(166)	0		•	•		
5/8 x 10	10	(254)	7	(180)	R		•	•		
			1-1/2	(41)		20		•	•	
3/4 x 4-3/4	4-3/4	(121)	2 7/16	(62)	G	10	•			•
			2-1/10	(02)		20		•		
			1-1/2	(41)		20		•		
3/4 x 5-1/2	5-1/2	(140)	2 7/16	(95)	I	10	•			•
			3-7/10	(65)		20		٠		
2/4 - 7	7	(179)	4-5/8	(119)			•			
3/4 X 7		(178)	4-7/8	(124)				•		
3/4 x 8	8	(203)	5-3/4	(146)	N	10	•	•		•
3/4 x 10	10	(254)	5-7/8	(152)	R]	•	•	•	
3/4 x 12	12	(305)	5-7/8	(152)	Т		•	•		
1 x 6	6	(152)	2-1/4	(57)	J		•	•	•	
1 x 9	9	(114)	2-1/4	(57)	Р	5	•	•		
1 x 12	12	(114)	6	(152)	Т		•	•		

Countersunk KWIK Bolt 3 anchor product line

	Length				
Size	in.	(mm)	Box	Carbon steel	304 SS
C1/4 x 2	2	(51)	100	•	
C1/4 x 3	3	(76)	100	•	•
C1/4 x 5	5	(127)	100	•	
C3/8 x 2-1/4	2-1/4	(57)	100	•	
C3/8 x 3	3	(76)	100	•	
C3/8 x 4	4	(102)	50	•	•
C3/8 x 5	5	(127)	50	•	

Rod Coupling KWIK Bolt 3 anchor product line

	Ler	igth	Thread length			Box
Size	in.	(mm)	in.	(mm)	ID stamp	quantity
3/8 x 2-1/4	2-1/4	(57)	7/8	(22)	В	100

HHDCA ceiling anchor product line

	Len	gth	Eyelet size	
Size	in.	(mm)	in.	Box quantity
1/4 x 2	2-1/32	(52)	5/16	100

KWIK Bolt 3 anchor

Long thread KWIK Bolt 3 anchor

Countersunk KWIK Bolt 3 anchor

Table 43 - KWIK Bolt 3 length identification system

Length ID marking on В С D Е F G Н L J κ L Ν 0 Ρ Q R S Т U ٧ W А Μ bolt head 7 1/2 11/2 2 1/2 5 1/2 7 From 2 3 3 1/2 4 4 1/2 5 6 6 1/2 8 8 1/2 9 9 1/2 10 11 12 13 14 15 Length of Up to anchor but not 2 2 1/2 3 3 1/2 4 4 ½ 5 5 ½ 6 6 ½ 7 7 1/2 8 8 1/2 9 9 ½ 10 11 12 13 14 15 16 $\boldsymbol{\ell}_{\mathrm{anch}}$ including in.

Rod coupling KWIK Bolt 3 anchor 3/8 x 2 1/4

HHDCA ceiling hanger 1/4 x 2

