

ICC-ES Evaluation Report

ESR-3814

Reissued January 2021 Revised March 2021 This report is subject to renewal January 2023.

www.icc-es.org | (800) 423-6587 | (562) 699-0543

A Subsidiary of the International Code Council®

DIVISION: 03 00 00—CONCRETE Section: 03 16 00—Concrete Anchors

DIVISION: 05 00 00—METALS

Section: 05 05 19—Post-installed Concrete Anchors

REPORT HOLDER:

HILTI, INC.

EVALUATION SUBJECT:

HILTI HIT-RE 500 V3 ADHESIVE ANCHORS AND POST-INSTALLED REINFORCING BAR CONNECTIONS IN CRACKED AND UNCRACKED CONCRETE

1.0 EVALUATION SCOPE

Compliance with the following codes:

- 2018, 2015, 2012 and 2009 International Building Code[®] (IBC)
- 2018, 2015, 2012 and 2009 International Residential Code[®] (IRC)
- 2013 Abu Dhabi International Building Code (ADIBC)†

 $_{\rm 1}$ The ADIBC is based on the 2009 IBC. 2009 IBC code sections referenced in this report are the same sections in ADIBC.

For evaluation for compliance with the *National Building Code of Canada*® (NBCC), see listing report <u>ELC-3814</u>.

For evaluation for compliance with codes adopted by Los Angeles Department of Building and Safety (LADBS), see <u>ESR-3814 LABC and LARC Supplement</u>.

Property evaluated:

Structural

2.0 USES

The Hilti HIT-RE 500 V3 Adhesive Anchoring System and Post-Installed Reinforcing Bar System are used to resist static, wind and earthquake (Seismic Design Categories A through F) tension and shear loads in cracked and uncracked normal-weight concrete having a specified compressive strength, f'c, of 2,500 psi to 8,500 psi (17.2 MPa to 58.6 MPa) [minimum of 24 MPa is required under ADIBC Appendix L, Section 5.1.1].

The anchor system complies with anchors as described in Section 1901.3 of the 2018 and 2015 IBC, Section 1909 of the 2012 IBC and is an alternative to cast-in-place anchors described in Section 1908 of the 2012 IBC, and Sections

1911 and 1912 of the 2009 IBC. The anchor systems may also be used where an engineered design is submitted in accordance with Section R301.1.3 of the IRC.

The post-installed reinforcing bar system is an alternative to cast-in-place reinforcing bars governed by ACI 318 and IBC Chapter 19.

3.0 DESCRIPTION

3.1 General:

The Hilti HIT-RE 500 V3 Adhesive Anchoring System and Post-Installed Reinforcing Bar System are comprised of the following components:

- Hilti HIT-RE 500 V3 adhesive packaged in foil packs
- · Adhesive mixing and dispensing equipment
- Equipment for hole cleaning and adhesive injection

The Hilti HIT-RE 500 V3 Adhesive Anchoring System may be used with continuously threaded rod, Hilti HIS-(R)N internally threaded inserts or deformed steel reinforcing bars as depicted in Figure 4. The Hilti HIT-RE 500 V3 Post-Installed Reinforcing Bar System may only be used with deformed steel reinforcing bars as depicted in Figures 2 and 3. The primary components of the Hilti Adhesive Anchoring and Post-Installed Reinforcing Bar Systems, including the Hilti HIT-RE 500 V3 Adhesive, HIT-RE-M static mixing nozzle and steel anchoring elements, are shown in Figure 6 of this report.

The manufacturer's printed Installation instructions (MPII), as included with each adhesive unit package, are consolidated as Figure 9A and 9B.

3.2 Materials:

3.2.1 Hilti HIT-RE 500 V3 Adhesive: Hilti HIT-RE 500 V3 Adhesive is an injectable, two-component epoxy adhesive. The two components are separated by means of a dual-cylinder foil pack attached to a manifold. The two components combine and react when dispensed through a static mixing nozzle attached to the manifold. Hilti HIT-RE 500 V3 is available in 11.1-ounce (330 ml), 16.9-ounce (500 ml), and 47.3-ounce (1400 ml) foil packs. The manifold attached to each foil pack is stamped with the adhesive expiration date. The shelf life, as indicated by the expiration date, applies to an unopened foil pack stored in a dry, dark environment and in accordance with Figure 9A.

3.2.2 Hole Cleaning Equipment:

3.2.2.1 Standard Equipment: Standard hole cleaning equipment, comprised of steel wire brushes and air nozzles, is described in Figure 9A of this report.

3.2.2.2 Hilti Safe-Set™ System: For the elements described in Sections 3.2.5.1 through 3.2.5.3 and Section 3.2.6, the Hilti TE-CD or TE-YD hollow carbide drill bit with a carbide drilling head conforming to ANSI B212.15 must be used. When used in conjunction with a Hilti vacuum with a minimum value for the maximum volumetric flow rate of 129 CFM (61 ℓ/s), the Hilti TE-CD or TE-YD drill bit will remove the drilling dust, automatically cleaning the hole. Available sizes for Hilti TE-CD or TE-YD drill bit are shown in Figure 9A

3.2.3 Hole Preparation Equipment:

- **3.2.3.1** Hilti Safe-Set™ System: TE-YRT Roughening Tool: For the elements described in Sections 3.2.5.1 through 3.2.5.3 and Tables 9, 12, 17, 20, and 29, the Hilti TE-YRT roughening tool with a carbide roughening head is used for hole preparation in conjunction with holes core drilled with a diamond core bit as illustrated in Figure 5.
- **3.2.4 Dispensers:** Hilti HIT-RE 500 V3 must be dispensed with manual, electric, or pneumatic dispensers provided by Hilti.

3.2.5 Anchor Elements:

- **3.2.5.1 Threaded Steel Rods:** Threaded steel rods must be clean, continuously threaded rods (all-thread) in diameters as described in Tables 6 and 14 and Figure 4 of this report. Steel design information for common grades of threaded rods is provided in Table 2. Carbon steel threaded rods must be furnished with a 0.0002-inch-thick (0.005 mm) zinc electroplated coating complying with ASTM B633 SC 1 or must be hot-dipped galvanized complying with ASTM A153, Class C or D. Stainless steel threaded rods must comply with ASTM F593 or ISO 3506 A4. Threaded steel rods must be straight and free of indentations or other defects along their length. The ends may be stamped with identifying marks and the embedded end may be blunt cut or cut on the bias to a chisel point.
- 3.2.5.2 Steel Reinforcing Bars for use in Post-Installed Anchor Applications: Steel reinforcing bars are deformed bars as described in Table 3 of this report. Tables 6, 14, and 22 and Figure 4 summarize reinforcing bar size ranges. The embedded portions of reinforcing bars must be straight, and free of mill scale, rust, mud, oil, and other coatings (other than zinc) that may impair the bond with the adhesive. Reinforcing bars must not be bent after installation, except set forth ACI 318-14 26.6.3.1(b) in or ACI 318-11 7.3.2, as applicable, with the additional condition that the bars must be bent cold, and heating of reinforcing bars to facilitate field bending is not permitted.
- 3.2.5.3 Hilti HIS-N and HIS-RN Inserts: Hilti HIS-N and HIS-RN inserts have a profile on the external surface and are internally threaded. Mechanical properties for Hilti HIS-N and HIS-RN inserts are provided in Table 4. The inserts are available in diameters and lengths as shown in Table 26 and Figure 4. Hilti HIS-N inserts are produced from carbon steel and furnished with a 0.0002-inch-thick (0.005 mm) zinc electroplated coating complying with ASTM 1. The stainless steel Hilti HIS-RN inserts are fabricated from X5CrNiMo17122 K700 steel conforming to DIN 17440. Specifications for common bolt types that may be used in conjunction with Hilti HIS-N and HIS-RN inserts are provided in Table 5. Bolt grade and material type (carbon, stainless) must be matched to the insert. Strength reduction factors, ϕ , corresponding to brittle steel elements must be used for Hilti HIS-N and HIS-RN inserts.
- **3.2.5.4 Ductility:** In accordance with ACI 318-14 2.3 or ACI 318-11 D.1, as applicable, in order for a steel element to be considered ductile, the tested elongation must be at

least 14 percent and reduction of area must be at least 30 percent. Steel elements with a tested elongation of less than 14 percent or a reduction of area of less than 30 percent, or both, are considered brittle. Values for various steel materials are provided in Tables 2, 3, 4, and 5 of this report. Where values are nonconforming or unstated, the steel must be considered brittle.

3.2.6 Steel Reinforcing Bars for Use in Post-Installed Reinforcing Bar Connections: Steel reinforcing bars used in post-installed reinforcing bar connections are deformed bars (rebar) as depicted in Figures 2 and 3. Tables 31, 32, 33, and Figure 4 summarize reinforcing bar size ranges. The embedded portions of reinforcing bars must be straight, and free of mill scale, rust, mud, oil, and other coatings that may impair the bond with the adhesive. Reinforcing bars must not be bent after installation, except as set forth in ACI 318-14 26.6.3.1(b) or ACI 318-11 7.3.2, as applicable, with the additional condition that the bars must be bent cold, and heating of reinforcing bars to facilitate field bending is not permitted.

3.3 Concrete:

Normal-weight concrete must comply with Sections 1903 and 1905 of the IBC, as applicable. The specified compressive strength of the concrete must be from 2,500 psi to 8,500 psi (17.2 MPa to 58.6 MPa) [minimum 24 MPa required under ADIBC Appendix L, Section 5.1.1].

4.0 DESIGN AND INSTALLATION

4.1 Strength Design of Post-Installed Anchors:

Refer to Table 1 for the design parameters for specific installed elements, and refer to Figure 5 and Section 4.1.4 for a flowchart to determine the applicable design bond strength or pullout strength.

4.1.1 General: The design strength of anchors complying with the 2018 and 2015 IBC, as well as Section R301.1.3 of the 2018 and 2015 IRC must be determined in accordance with ACI 318-14 Chapter 17 and this report.

The design strength of anchors under the 2012 and 2009 IBC, as well as the 2012 and 2009 IRC must be determined in accordance with ACI 318-11 and this report.

A design example according to the 2018 and 2015 IBC based on ACI 318-14 is given in Figure 7 of this report.

Design parameters are based on ACI 318-14 for use with the 2018 and 2015 IBC, and ACI 318-11 for use with the 2012 and 2009 IBC unless noted otherwise in Sections 4.1.1 through 4.1.11 of this report.

The strength design of anchors must comply with ACI 318-14 17.3.1 or ACI 318-11 D.4.1 as applicable, except as required in ACI 318-14 17.2.3 or ACI 318-11 D.3.3, as applicable.

Design parameters are provided in Table 6A through Table 30. Strength reduction factors, ϕ , as given in ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable, must be used for load combinations calculated in accordance with Section 1605.2 of the IBC or ACI 318-14 5.3 or ACI 318-11 9.2, as applicable. Strength reduction factors, ϕ , as given in ACI 318-11 D.4.4 must be used for load combinations calculated in accordance with ACI 318-11 Appendix C.

4.1.2 Static Steel Strength in Tension: The nominal static steel strength of a single anchor in tension, N_{sa} , in accordance with ACI 318-14 17.4.1.2 or ACI 318-11 Section D.5.1.2, as applicable, and the associated strength reduction factors, ϕ , in accordance with ACI 318-14 17.3.3 or ACI 318-11 Section D.4.3, as applicable, are provided in the tables outlined in Table 1 for the anchor element types included in this report.

4.1.3 Static Concrete Breakout Strength in Tension: The nominal concrete breakout strength of a single anchor or group of anchors in tension, N_{cb} or N_{cbg} , must be calculated in accordance with ACI 318-14 17.4.2 or ACI 318-11 D.5.2, as applicable, with the following addition:

The basic concrete breakout strength of a single anchor in tension, N_b , must be calculated in accordance with ACI 318-14 17.4.2.2 or ACI 318-11 D.5.2.2, as applicable using the values of $k_{c,cr}$, and $k_{c,uncr}$, as described in this report. Where analysis indicates no cracking in accordance with ACI 318-14 17.4.2.6 or ACI 318-11 D.5.2.6, as applicable, N_b must be calculated using $k_{c,uncr}$ and $\Psi_{c,N} = 1.0$. See Table 1. For lightweight anchors in concrete, ACI 318-14 17.2.6 or ACI 318-11 D.3.6, as applicable. The value of f_c used for calculation must be limited to 8,000 psi (55 MPa) in accordance with ACI 318-14 17.2.7 or ACI 318-11 D.3.7, as applicable. Additional information for the determination of nominal bond strength in tension is given in Section 4.1.4 of this report.

4.1.4 Static Bond Strength in Tension: The nominal static bond strength of a single adhesive anchor or group of adhesive anchors in tension, N_a or N_{ag} , must be calculated in accordance with ACI 318-14 17.4.5 or ACI 318-11 D.5.5, as applicable. Bond strength values are a function of the concrete compressive strength, whether the concrete is cracked or uncracked, the concrete temperature range, the drilling method, and the installation conditions (dry or water-saturated, etc.). The resulting characteristic bond strength shall be multiplied by the associated strength reduction factor ϕ_{nn} as follows:

associated strength reduction factor will as follows.						
DRILLING METHOD	CONCRETE TYPE	PERMISSIBLE INSTALLATION CONDITIONS BOND STRENGTH		ASSOCIATED STRENGTH REDUCTION FACTOR		
		Dry	Tk,uncr or Tk,cr	фа		
Hammer-drill	Cracked and	Water-saturated	$\mathcal{T}_{k,uncr}$ or $\mathcal{T}_{k,cr}$	ϕ_{ws}		
	Uncracked	Water-filled hole	$\mathcal{T}_{k,uncr}$ or $\mathcal{T}_{k,cr}$	фwf		
		Underwater application	Tk,uncr or Tk,cr	фиw		
Core Drilled with Roughening Tool	Cracked and	Dry	$\mathcal{T}_{k,uncr}$ or $\mathcal{T}_{k,cr}$	фа		
or Hilti TE- CD or TE- YD Hollow Drill Bit	Uncracked	Water-saturated	$\mathcal{T}_{k,uncr}$ or $\mathcal{T}_{k,cr}$	Øws		
Core Drilled	Uncracked	Dry	$ au_{k,uncr}$	$\phi_{\sf d}$		
Core Drilled	Uniciacked	Water-saturated	$ au_{k,uncr}$	ø ws		

Figure 5 of this report presents a bond strength design selection flowchart. Strength reduction factors for determination of the bond strength are outlined in Table 1 of this report. Adjustments to the bond strength may also be made for increased concrete compressive strength as noted in the footnotes to the bond strength tables.

4.1.5 Static Steel Strength in Shear: The nominal static strength of a single anchor in shear as governed by the steel, $V_{\rm sa}$, in accordance with ACI 318-14 17.5.1.2 or ACI 318-11 D.6.1.2, as applicable, and strength reduction factors, ϕ , in accordance with ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable, are given in the tables outlined in Table 1 for the anchor element types included in this report.

- **4.1.6** Static Concrete Breakout Strength in Shear: The nominal static concrete breakout strength of a single anchor or group of anchors in shear, V_{cb} or V_{cbg} , must be calculated in accordance with ACI 318-14 17.5.2 or ACI 318-11 D.6.2, as applicable, based on information given in the tables outlined in Table 1. The basic concrete breakout strength of a single anchor in shear, V_b , must be calculated in accordance with ACI 318-14 17.5.2.2 or ACI 318-11 D.6.2.2, as applicable, using the values of d given in the tables as outlined in Table 1 for the corresponding anchor steel in lieu of d_a (2018, 2015, 2012 and 2009 IBC). In addition, h_{ef} must be substituted for ℓ_e . In no case must ℓ_e exceed d The value of d must be limited to a maximum of 8,000 psi (55 MPa) in accordance with ACI 318-14 17.2.7 or ACI 318-11 D.3.7, as applicable.
- **4.1.7 Static Concrete Pryout Strength in Shear:** The nominal static pryout strength of a single anchor or group of anchors in shear, V_{cp} or V_{cpg} , must be calculated in accordance with ACI 318-14 17.5.3 or ACI 318-11 D.6.3, as applicable.
- **4.1.8 Interaction of Tensile and Shear Forces:** For designs that include combined tension and shear, the interaction of tension and shear loads must be calculated in accordance with ACI 318-14 17.6 or ACI 318-11 D.7, as applicable.
- **4.1.9 Minimum Member Thickness,** h_{min} , **Anchor Spacing,** s_{min} and **Edge Distance,** c_{min} : In lieu of ACI 318-14 17.7.1 and 17.7.3 or ACI 318-11 D.8.1 and D.8.3, as applicable, values of s_{min} and c_{min} described in this report must be observed for anchor design and installation. Likewise, in lieu of ACI 318-14 17.7.5 or ACI 318-11 D.8.5, as applicable, the minimum member thicknesses, h_{min} , described in this report must be observed for anchor design and installation. For adhesive anchors that will remain untorqued, ACI 318-14 17.7.4 or ACI 318-11 D.8.4, as applicable, applies.

For edge distances c_{ai} and anchor spacing s_{ai} , the maximum torque T_{max} shall comply with the following requirements:

REDUCED MAXIMUM INSTALLATION TORQUE $T_{max.red}$ FOR EDGE DISTANCES $c_{ai} < (5 \times d_a)$						
EDGE DISTANCE, c_{ai} MINIMUM ANCHOR SPACING, s_{ai} TORQUE, $T_{max,re}$						
1.75 in. (45 mm) ≤ c _{ai}	$5 \times d_a \le s_{ai} < 16 \text{ in.}$	0.3 x <i>T_{max}</i>				
< 5 x <i>d</i> _a	s _{ai} ≥ 16 in. (406 mm)	0.5 x T _{max}				

4.1.10 Critical Edge Distance c_{ac} : In lieu of ACI 318-14 17.7.6 or ACI 318-11 D.8.6, as applicable, c_{ac} must be determined as follows:

$$c_{ac} = h_{ef} \cdot \left(\frac{\tau_{k,uncr}}{1160}\right)^{0.4} \cdot \left[3.1 - 0.7 \frac{h}{h_{ef}}\right]$$
 Eq. (4-1)

where $\left[\frac{h}{h_{ef}}\right]$ need not be taken as larger than 2.4: and

 $au_{\kappa,uncr}$ is the characteristic bond strength in uncracked concrete stated in the tables of this report, whereby $au_{\kappa,uncr}$ need not be taken as greater than:

$$\tau_{k,uncr} = \frac{k_{uncr} \sqrt{h_{ef} f_c}}{\pi \cdot d}$$

4.1.11 Design Strength in Seismic Design Categories C, D, E and F: In structures assigned to Seismic Design Category C, D, E or F under the IBC or IRC, the design must be performed according to ACI 318-14 17.2.3 or ACI 318-

11 Section D.3.3, as applicable. Modifications to ACI 318-14 17.2.3 shall be applied under Section 1905.1.8 of the 2018 and 2015 IBC. For the 2012 IBC, Section 1905.1.9 shall be omitted. Modifications to ACI 318-08 D.3.3 must be applied under Section 1908.1.9 of the 2009 IBC.

The nominal steel shear strength, V_{sa} , must be adjusted by $\alpha_{V,seis}$ as given in the tables summarized in Table 1 for the anchor element types included in this report. For tension, the nominal pullout strength $N_{p,cr}$ or bond strength τ_{cr} must be adjusted by $\alpha_{N,seis}$. See Tables 8, 9, 11, 12, 16, 17, 19, 20, 24, 28 and 29.

Modify ACI 318-11 Sections D.3.3.4.2, D.3.3.4.3(d) and D.3.3.5.2 to read as follows:

ACI 318-11 D.3.3.4.2 - Where the tensile component of the strength-level earthquake force applied to anchors exceeds 20 percent of the total factored anchor tensile force associated with the same load combination, anchors and their attachments shall be designed in accordance with ACI 318-11 D.3.3.4.3. The anchor design tensile strength shall be determined in accordance with ACI 318-11 D.3.3.4.4

Exception:

1. Anchors designed to resist wall out-of-plane forces with design strengths equal to or greater than the force determined in accordance with ASCE 7 Equation 12.11-1 or 12.14-10 shall be deemed to satisfy ACI 318-11 D.3.3.4.3(d).

ACI 318-11 D.3.3.4.3(d) – The anchor or group of anchors shall be designed for the maximum tension obtained from design load combinations that include E, with E increased by Ω_0 . The anchor design tensile strength shall be calculated from ACI 318-11 D.3.3.4.4.

ACI 318-11 D.3.3.5.2 – Where the shear component of the strength-level earthquake force applied to anchors exceeds 20 percent of the total factored anchor shear force associated with the same load combination, anchors and their attachments shall be designed in accordance with ACI 318-11 D.3.3.5.3. The anchor design shear strength for resisting earthquake forces shall be determined in accordance with ACI 318-11 D.6.

Exceptions:

- 1. For the calculation of the in-plane shear strength of anchor bolts attaching wood sill plates of bearing or non-bearing walls of light-frame wood structures to foundations or foundation stem walls, the in-plane shear strength in accordance with ACI 318-11 D.6.2 and D.6.3 need not be computed and ACI 318-11 D.3.3.5.3 need not apply provided all of the following are satisfied:
 - 1.1. The allowable in-plane shear strength of the anchor is determined in accordance with AF&PA NDS Table 11E for lateral design values parallel to grain.
 - 1.2. The maximum anchor nominal diameter is $^{5}/_{8}$ inch (16 mm).
 - 1.3. Anchor bolts are embedded into concrete a minimum of 7 inches (178 mm).
 - 1.4. Anchor bolts are located a minimum of 1³/₄ inches (45 mm) from the edge of the concrete parallel to the length of the wood sill plate.
 - 1.5. Anchor bolts are located a minimum of 15 anchor diameters from the edge of the concrete perpendicular to the length of the wood sill plate.

- 1.6. The sill plate is 2-inch or 3-inch nominal thickness.
- 2. For the calculation of the in-plane shear strength of anchor bolts attaching cold-formed steel track of bearing or non-bearing walls of light-frame construction to foundations or foundation stem walls, the in-plane shear strength in accordance with ACI 318-11 D.6.2 and D.6.3, need not be computed and ACI 318-11 D.3.3.5.3 need not apply provided all of the following are satisfied:
 - 2.1. The maximum anchor nominal diameter is $^{5}/_{8}$ inch (16 mm).
 - 2.2. Anchors are embedded into concrete a minimum of 7 inches (178 mm).
 - 2.3. Anchors are located a minimum of $1^{3}/_{4}$ inches (45 mm) from the edge of the concrete parallel to the length of the track.
 - 2.4. Anchors are located a minimum of 15 anchor diameters from the edge of the concrete perpendicular to the length of the track.
 - 2.5. The track is 33 to 68 mil designation thickness.

Allowable in-plane shear strength of exempt anchors, parallel to the edge of concrete shall be permitted to be determined in accordance with AISI S100 Section E3.3.1.

3. In light-frame construction, bearing or nonbearing walls, shear strength of concrete anchors less than or equal to 1 inch [25 mm] in diameter attaching a sill plate or track to foundation or foundation stem wall need not satisfy ACI 318-11 D.3.3.5.3(a) through (c) when the design strength of the anchors is determined in accordance with ACI 318-11 D.6.2.1(c).

4.2 Strength Design of Post-Installed Reinforcing Bars:

4.2.1 General: The design of straight post-installed deformed reinforcing bars must be determined in accordance with ACI 318 rules for cast-in place reinforcing bar development and splices and this report.

Examples of typical applications for the use of post-installed reinforcing bars are illustrated in Figures 2 and 3 of this report. A design example in accordance with the 2018 and 2015 IBC based on ACI 318-14 is given in Figure 8 of this report.

4.2.2 Determination of bar development length *I_d*: Values of *I_d* must be determined in accordance with the ACI 318 development and splice length requirements for straight cast-in place reinforcing bars.

Exceptions:

- 1. For uncoated and zinc-coated (galvanized) post-installed reinforcing bars, the factor Ψ_e shall be taken as 1.0. For all other cases, the requirements in ACI 318-14 25.4.2.4 or ACI 318-11 12.2.4 (b) shall apply.
- 2. When using alternate methods to calculate the development length (e.g., anchor theory), the applicable factors for post-installed anchors generally apply.
- **4.2.3 Minimum Member Thickness,** *h_{min}*, **Minimum Concrete Cover,** *c_{c,min}*, **Minimum Concrete Edge Distance,** *c_{b,min}*, **Minimum Spacing,** *s_{b,min}*: For post-installed reinforcing bars, there is no limit on the minimum member thickness. In general, all requirements on concrete cover and spacing applicable to straight cast-in bars designed in accordance with ACI 318 shall be maintained.

For post-installed reinforcing bars installed at embedment depths, h_{ef} , larger than 20d (h_{ef} > 20d), the minimum concrete cover shall be as follows:

REBAR SIZE	MINIMUM CONCRETE COVER, C _{c,min}
d _b ≤ No. 6 (16 mm)	1³/ ₁₆ in. (30mm)
No. $6 < d_b \le No. 10$	1 ⁹ / ₁₆ in.
$(16mm < d_b \le 32mm)$	(40mm)

The following requirements apply for minimum concrete edge and spacing for $h_{ef} > 20d$:

Required minimum edge distance for post-installed reinforcing bars (measured from the center of the bar):

 $C_{b,min} = d_0/2 + C_{c,min}$

Required minimum center-to-center spacing between post-installed bars:

 $S_{b,min} = d_0 + C_{c,min}$

Required minimum center-to-center spacing from existing (parallel) reinforcing:

 $S_{b,min} = d_b/2$ (existing reinforcing) + $d_0/2$ + $c_{c,min}$

All other requirements applicable to straight cast-in place bars designed in accordance with ACI 318 shall be maintained.

4.2.4 Design Strength in Seismic Design Categories C, D, E and F: In structures assigned to Seismic Category C, D, E or F under the IBC or IRC, design of straight post-installed reinforcing bars must take into account the provisions of ACI 318-14 Chapter 18 or ACI 318-11 Chapter 21, as applicable.

4.3 Installation:

Installation parameters are illustrated in Figures 1 and 4. Installation must be in accordance with ACI 318-14 17.8.1 and 17.8.2 or ACI 318-11 D.9.1 and D.9.2, as applicable. Anchor and post-installed reinforcing bar locations must comply with this report and the plans and specifications approved by the code official. Installation of the Hilti HIT-RE 500 V3 Adhesive Anchor and Post-Installed Reinforcing Bar Systems must conform to the manufacturer's printed installation instructions (MPII) included in each unit package consolidated as Figures 9A and 9B of this report. The MPII contains additional requirements for combinations of drill hole depth, diameter, drill bit type, hole preparation, and dispensing tools.

The initial cure time, $t_{cure,ini}$, as noted in Figure 9A of this report, is intended for rebar applications only and is the time where rebar and concrete formwork preparation may continue. Between the initial cure time and the full cure time, $t_{cure,final}$, the adhesive has a limited load bearing capacity. Do not apply a torque or load on the rebar during this time

4.4 Special Inspection:

Periodic special inspection must be performed where required in accordance with Section 1705.1.1 and Table 1705.3 of the 2018, 2015 and 2012 IBC, or Section 1704.15 and Table 1704.4 of the 2009 IBC, as applicable, and this report. The special inspector must be on the jobsite initially during anchor or post-installed reinforcing bar installation to verify anchor or post-installed reinforcing bar type and dimensions, concrete type, concrete compressive strength, adhesive identification and expiration date, hole dimensions, hole cleaning procedures, spacing, edge distances, concrete thickness, anchor or post-installed reinforcing bar embedment, tightening torque and adherence to the manufacturer's printed installation instructions.

The special inspector must verify the initial installations of each type and size of adhesive anchor or post-installed reinforcing bar by construction personnel on site. Subsequent installations of the same anchor or post-installed reinforcing bar type and size by the same construction personnel are permitted to be performed in the absence of the special inspector. Any change in the anchor or post-installed reinforcing bar product being installed or the personnel performing the installation requires an initial inspection. For ongoing installations over an extended period, the special inspector must make regular inspections to confirm correct handling and installation of the product.

Continuous special inspection of adhesive anchors or post-installed reinforcing bar installed in horizontal or upwardly inclined orientations to resist sustained tension loads shall be performed in accordance with ACI 318-14 17.8.2.4, 26.7.1(h), and 26.13.3.2(c) or ACI 318-11 D.9.2.4, as applicable.

Under the IBC, additional requirements as set forth in Sections 1705, 1706, and 1707 must be observed, where applicable.

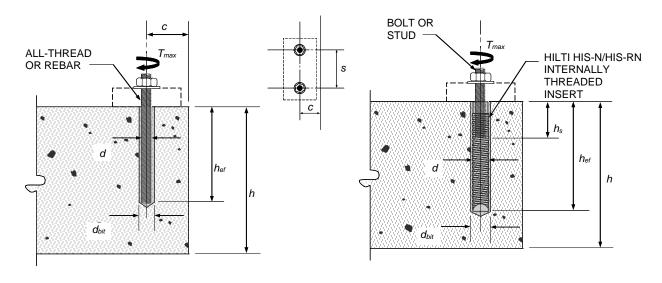
5.0 CONDITIONS OF USE

The Hilti HIT-RE 500 V3 Adhesive Anchor System and Post-Installed Reinforcing Bar System described in this report complies with, or is a suitable alternative to what is specified in, the codes listed in Section 1.0 of this report, subject to the following conditions:

- 5.1 Hilti HIT-RE 500 V3 Adhesive anchors and post-installed reinforcing bars must be installed in accordance with the manufacturer's printed installation instructions (MPII) as included in the adhesive packaging and consolidated as Figures 9A and 9B of this report.
- 5.2 The anchors and post-installed reinforcing bars must be installed in cracked and uncracked normal-weight concrete having a specified compressive strength f'c = 2,500 psi to 8,500 psi (17.2 MPa to 58.6 MPa) [minimum of 24 MPa is required under ADIBC Appendix L, Section 5.1.1].
- 5.3 The values of f'c used for calculation purposes must not exceed 8,000 psi (55.1 MPa).
- 5.4 The concrete shall have attained its minimum design strength prior to installation of the Hilti HIT-RE 500 V3 adhesive anchors or post-installed reinforcing bars.
- 5.5 Anchors and post-installed reinforcing bars must be installed in concrete base materials in holes drilled using carbide-tipped drill bits manufactured with the range of maximum and minimum drill-tip dimensions specified in ANSI B212.15-1994, or diamond core drill bits, as detailed in Figure 9A. Use of the Hilti TE-YRT Roughening Tool in conjunction with diamond core bits must be as detailed in Figure 9B.
- 5.6 Loads applied to the anchors must be adjusted in accordance with Section 1605.2 of the IBC for strength design.
- 5.7 Hilti HIT-RE 500 V3 adhesive anchors and post-installed reinforcing bars are recognized for use to resist short- and long-term loads, including wind and earthquake, subject to the conditions of this report.
- 5.8 In structures assigned to Seismic Design Category C, D, E or F under the IBC or IRC, anchor strength must be adjusted in accordance with Section 4.1.11 of this report, and post-installed reinforcing bars must comply with section 4.2.4 of this report.

- 5.9 Hilti HIT-RE 500 V3 adhesive anchors and post-installed reinforcing bars are permitted to be installed in concrete that is cracked or that may be expected to crack during the service life of the anchor, subject to the conditions of this report.
- **5.10** Anchor strength design values must be established in accordance with Section 4.1 of this report.
- 5.11 Post-installed reinforcing bar development and splice length is established in accordance with Section 4.2 of this report.
- 5.12 Minimum anchor spacing and edge distance as well as minimum member thickness must comply with the values noted in this report.
- 5.13 Post-installed reinforcing bar spacing, minimum member thickness, and cover distance must be in accordance with the provisions of ACI 318 for cast-in place bars and section 4.2.3 of this report.
- 5.14 Prior to anchor installation, calculations and details demonstrating compliance with this report must be submitted to the code official. The calculations and details must be prepared by a registered design professional where required by the statutes of the jurisdiction in which the project is to be constructed.
- 5.15 Anchors and post-installed reinforcing bars are not permitted to support fire-resistive construction. Where not otherwise prohibited by the code, Hilti HIT-RE 500 V3 adhesive anchors and post-installed reinforcing bars are permitted for installation in fire-resistive construction provided that at least one of the following conditions is fulfilled:
 - Anchors and post-installed reinforcing bars are used to resist wind or seismic forces only.
 - Anchors and post-installed reinforcing bars that support gravity load—bearing structural elements are within a fire-resistive envelope or a fire-resistive membrane, are protected by approved fire-resistive materials, or have been evaluated for resistance to fire exposure in accordance with recognized standards.
 - Anchors and post-installed reinforcing bars are used to support nonstructural elements.
- 5.16 Since an ICC-ES acceptance criteria for evaluating data to determine the performance of adhesive anchors and post-installed reinforcing bars subjected to fatigue or shock loading is unavailable at this time, the use of these anchors under such conditions is beyond the scope of this report.
- **5.17** Use of zinc-plated carbon steel threaded rods or steel reinforcing bars is limited to dry, interior locations.
- **5.18** Use of hot-dipped galvanized carbon steel and stainless steel rods is permitted for exterior exposure or damp environments.
- **5.19** Steel anchoring materials in contact with preservative-treated and fire-retardant-treated wood must be of zinc-coated carbon steel or stainless steel. The minimum coating weights for zinc-coated steel must comply with ASTM A153. Periodic special inspection must be provided in accordance with Section 4.4 of this report. Continuous special inspection for anchors and post-installed reinforcing bars installed in horizontal or upwardly inclined orientations to resist sustained tension loads must be provided in accordance with Section 4.4 of this report.
- 5.20 Installation of anchors and post-installed reinforcing bars in horizontal or upwardly inclined orientations to resist sustained tension loads shall be performed by personnel certified by an applicable certification

- program in accordance with ACI 318-14 17.8.2.2 or 17.8.2.3, or ACI 318-11 D.9.2.2 or D.9.2.3, as applicable.
- 5.21 Hilti HIT-RE 500 V3 adhesive anchors and post-installed reinforcing bars may be used to resist tension and shear forces in floor, wall, and overhead installations only if installation is into concrete with a temperature between 23°F and 104°F (-5°C and 40°C) for threaded rods, rebar, and Hilti HIS-(R)N inserts. Overhead installations for hole diameters larger than ⁷/₁₆-inch or 10mm require the use of piston plugs (HIT-SZ, -IP) during injection to the back of the hole. 7/16inch or 10mm diameter holes may be injected directly to the back of the hole with the use of extension tubing on the end of the nozzle. The anchor or post-installed reinforcing bars must be supported until fully cured (i.e., with Hilti HIT-OHW wedges, or other suitable means). Where temporary restraint devices are used. their use shall not result in imparement of the anchor shear resistance. Installations in temperatures below 41°F (5°C) require the adhesive to be conditioned to a minimum temperature of 41°F (5°C).
- 5.22 Anchors and post-installed reinforcing bars shall not be used for applications where the concrete temperature can rise from 40°F or less to 80°F or higher within a 12hour period. Such applications may include but are not limited to anchorage of building façade systems and other applications subject to direct sun exposure.
- 5.23 Hilti HIT-RE 500 V3 adhesives are manufactured by Hilti GmbH, Kaufering, Germany, under a quality-control program with inspections by ICC-ES.
- 5.24 Hilti HIS-N and HIS-RN inserts are manufactured by Hilti (China) Ltd., Guangdong, China, under a quality-control program with inspections by ICC-ES.


6.0 EVIDENCE SUBMITTED

Data in accordance with the ICC-ES Acceptance Criteria for Post-installed Adhesive Anchors in Concrete (AC308), dated June 2019 (Editorially revised March 2018), which incorporates requirements in ACI 355.4-11, including but not limited to tests under freeze/thaw conditions (Table 3.2, test series 6), and Table 3.8 for evaluating post-installed reinforcing bars.

7.0 IDENTIFICATION

- 7.1 Hilti HIT-RE 500 V3 adhesive is identified by packaging labeled with the manufacturer's name (Hilti Corp.) and address, product name, lot number, expiration date, and evaluation report number (ESR-3814).
- 7.2 Hilti HIS-N and HIS-RN inserts are identified by packaging labeled with the manufacturer's name (Hilti Corp.) and address, anchor name and size, and evaluation report number (ESR-3814). Threaded rods, nuts, washers, bolts, cap screws, and deformed reinforcing bars are standard elements and must conform to applicable national or international specifications.
- $\textbf{7.3} \quad \text{The report holder's contact information is the following:} \\$

HILTI, INC.
7250 DALLAS PARKWAY, SUITE 1000
PLANO, TEXAS 75024
(800) 879-8000
www.hilti.com

THREADED ROD/REINFORCING BAR

HIS-N AND HIS-RN INSERTS

FIGURE 1—INSTALLATION PARAMETERS FOR POST-INSTALLED ADHESIVE ANCHORS

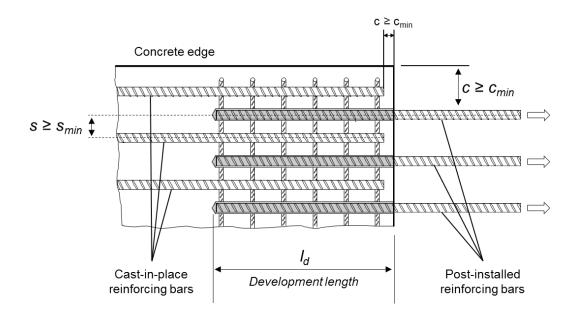


FIGURE 2—INSTALLATION PARAMETERS FOR POST-INSTALLED REINFORCING BARS

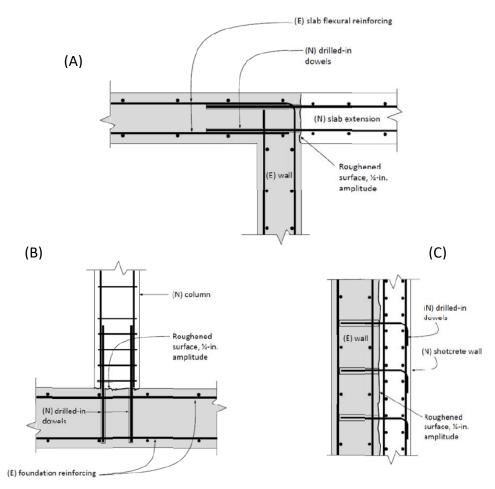
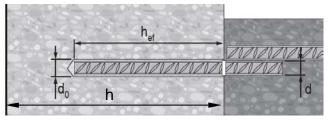
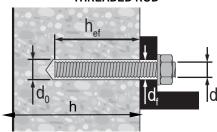
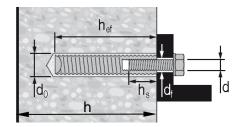



FIGURE 3—(A) TENSION LAP SPLICE WITH EXISTING FLEXURAL REINFORCEMENT; (B) TENSION DEVELOPMENT OF COLUMN DOWELS; (C) DEVELOPMENT OF SHEAR DOWELS FOR NEW ONLAY SHEAR WALL

DEFORMED REINFORCMENT



U Rebar		
Ø d [mm]	Ø d₀ [mm]	h _{ef} [mm]
8	12	60480
10	14	60600
12	16	70720
14	18	75840
16	20	80960
18	22	851080
20	25	901200
22	28	951320
24	32	961440
25	32	1001500
26	35	1041560
28	35	1121680
30	37	1201800
32	40	1281920


VIZIZIZIZIZ	Ø d₀	h _{ef}
d	[inch]	[inch]
#3	1/2	23/8221/2
#4	5/8	23/430
#5	3/4	3 1/837 1/2
#6	7/8	31/215
# 6	1	1545
#7	1	31/2171/2
# /	1 1/8	17 1/252 1/2
#8	1 1/8	420
# 0	1 1/4	2060
#9	13/8	4 1/267 1/2
#10	1 1/2	575
# 11	1 3/4	5 1/282 1/2

CA Rebar		
WZZZZZZ	Ø d₀	h _{ef}
d	[inch]	[mm]
10 M	9/16	70678
15 M	3/4	80960
20 M	1	901170
25 M	1 1/4 (32 mm)	1011512
30 M	11/2	1201794

THREADED ROD

HILTI HIS-N AND HIS-RN THREADED INSERTS

HAS / HIT-V

Ø d [inch]	$\emptyset d_0$ [inch]	h _{et} [inch]	Ø d _f [inch]	T _{max} [ft-lb]	T _{max} [Nm]
3/8	7/16	23/871/2	7/16	15	20
1/2	9/16	23/410	9/16	30	41
5/8	3/4	31/8 121/2	11/16	60	81
3/4	7/8	31/215	13/16	100	136
7/8	1	31/2 171/2	15/16	125	169
1	1 1/8	420	1 1/8	150	203
1 1/4	13/8	525	1 3/8	200	271

Ø d [inch]	Ø d₀ [inch]	h _{ef} [inch]	Ø d _f [inch]	h。 [inch]	T _{max} [ft- l b]	T _{max} [Nm]
3/8	11/16	4 3/8	7/16	3/815/16	15	20
1/2	7/8	5	9/16	1/21 3/16	30	41
5/8	11/8	63/4	11/16	5/81 1/2	60	81
3/4	11/4	81/8	13/16	3/417/8	100	136

Ø d [mm]	Ø d₀ [mm]	h _{et} [mm]	Ø d _f [mm]	T _{max} [Nm]
M8	10	60160	9	10
M10	12	60200	12	20
M12	14	70240	14	40
M16	18	80320	18	80
M20	22	90400	22	150
M24	28	100480	26	200
M27	30	110540	30	270
M30	35	120600	33	300

Ø d [mm]	Ø d₀ [mm]	h _{et} [mm]	Ø d _f [mm]	h _s [mm]	T _{max} [Nm]
M8	14	90	9	820	10
M10	18	110	12	1025	20
M12	22	125	14	1230	40
M16	28	170	18	1640	80
M20	32	205	22	2050	150

FIGURE 4—INSTALLATION PARAMETERS (Continued)

TABLE 1—DESIGN TABLE INDEX

Decima I	Design Table			Metric	
Design Table		Table	Page	Table	Page
Standard Threaded Rod	Steel Strength - Nsa, Vsa	6A	13	14	20
	Concrete Breakout - N_{cb} , N_{cbg} , V_{cb} , V_{cpg}	7	15	15	21
	Bond Strength - Na, Nag	11-13	18-19	19-21	25-26
Hilti HIS-N and HIS-RN Internally Threaded Insert	Steel Strength - N _{sa} , V _{sa}	26	30	26	30
	Concrete Breakout - N_{cb} , N_{cbg} , V_{cb} , V_{cpg} , V_{cpg}	27	31	27	31
	Bond Strength - Na, Nag	28-30	32-33	28-30	32-33

Design 1	Tabla	Fract	ional	EU N	letric	Canadian	
Design	able	Table	Page	Table	Page	Table	Page
Steel Reinforcing Bars	Steel Strength - Nsa, Vsa	6B	14	14	20	22	27
	Concrete Breakout - N_{cb} , N_{cbg} , V_{cb} , V_{cpg}	7	15	15	21	23	27
	Bond Strength - Na, Nag	8-10	16-17	16-18	22-24	24-25B	28-29
	Determination of development length for post-installed reinforcing bar connections	31	34	32	34	33	35

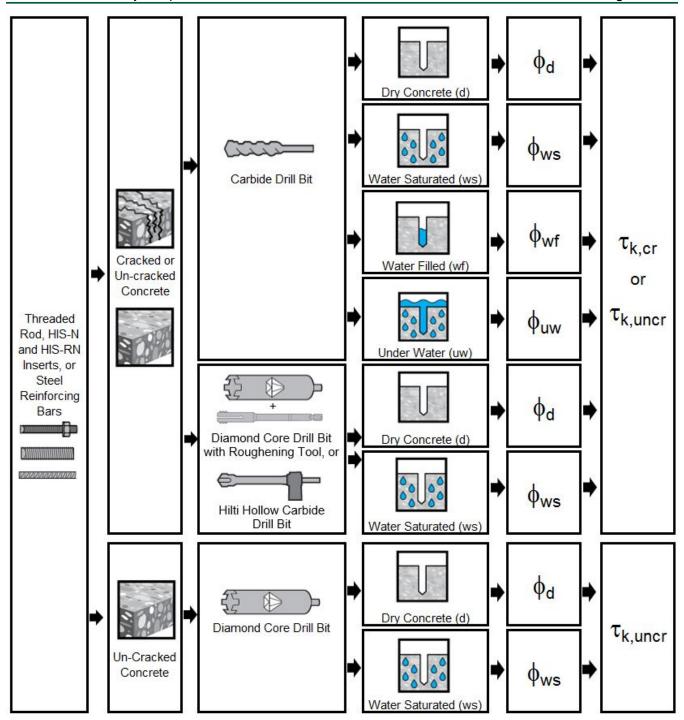


FIGURE 5—FLOWCHART FOR THE ESTABLISHMENT OF DESIGN BOND STRENGTH

TABLE 2—SPECIFICATIONS AND PHYSICAL PROPERTIES OF COMMON CARBON AND STAINLESS STEEL THREADED ROD MATERIALS¹

25000000	EADED ROD SPECIFICATION		Minimum specified ultimate strength, f _{uta}	Minimum specified yield strength 0.2 percent offset, fya	f _{uta} /f _{ya}	Elongation, min. percent ⁷	Reduction of Area, min. percent	Specification for nuts ⁸
	ASTM A193 ² Grade B7	psi	125,000	105,000	1.19	16	50	ASTM A563 Grade DH
	$\leq 2^{1}/_{2}$ in. (≤ 64 mm)	(MPa)	(862)	(724)	1.10	10	30	710 TWI 71000 GIAGE DIT
	ASTM F568M3 Class 5.8	psi	72,500	58,000	4.05	40	25	ASTM A563 Grade DH ⁹
	M5 (1/4 in.) to M24 (1 in.) (equivalent to ISO 898-1)	(MPa)	(500)	(400)	1.25	10	35	DIN 934 (8-A2K)
_	ACTM F4554 Crode 267	psi	58,000	36,000	1.61	23	40	ASTM A194 or ASTM A563
STEEL	ASTM F1554, Grade 36 ⁷	(MPa)	(400)	(248)	1.61	23	40	ASTM A194 OF ASTM A563
LS S	ASTM F1554, Grade 55 ⁷	psi	75,000	55,000	1.36	21	30	ASTM A194 or ASTM A563
BO	A31W1 1334, Glade 33	(MPa)	(517)	(379)	1.30	21	30	A31W A194 OF A31W A303
CARBON	ASTM F1554, Grade 105 ⁷	psi	125,000	105,000	1.19	15	45	ASTM A194 or ASTM A563
O	ASTIVIT 1994, Glade 199	(MPa)	(862)	(724)	1.13	15	45	A01W A194 01 A01W A303
	ISO 898-1 ⁴ Class 5.8	MPa	500	400	1.25	22	_	DIN 934 Grade 6
	100 000 1 01000 0.0	(psi)	(72,500)	(58,000)	1.20	22		DIIV 304 Glade 0
	100 000 44 01 0 0	MPa	800	640	4.05	40	50	DIN 004 O . I . O
	ISO 898-1 ⁴ Class 8.8	(psi)	(116,000)	(92,800)	1.25	12	52	DIN 934 Grade 8
	ASTM F593 ⁵ CW1 (316)	psi	100,000	65,000	1.54	20		ASTM F594
	¹ / ₄ -in. to ⁵ / ₈ -in.	(MPa)	(689)	(448)	1.54	20	-	A31W1 394
닖	ASTM F593 ⁵ CW2 (316)	psi	85,000	45,000	1.89	25	_	ASTM F594
STEEL	³ / ₄ -in. to 1 ¹ / ₂ -in.	(MPa)	(586)	(310)	1.03	25	_	A01W1 004
SSS	ASTM A193 Grade 8(M), Class	psi	75,000	30,000	2.50	30	50	ASTM F594
LES	1 ² - 1 ¼-in.	(MPa)	(517)	(207)	2.00	00	00	7.011111001
STAINLESS	ISO 3506-1 ⁶ A4-70	MPa	700	450	1.56	40	_	ISO 4032
ST	M8 – M24	(psi)	(101,500)	(65,250)	1.00			100 1002
	ISO 3506-1 ⁶ A4-50	MPa	500	210	2.38	40		ISO 4032
	M27 – M30	(psi)	(72,500)	(30,450)	2.36	40	-	130 4032

¹ Hilti HIT-RE 500 V3 adhesive may be used in conjunction with all grades of continuously threaded carbon or stainless steel rod (all-thread) that comply with the code reference standards and that have thread characteristics comparable with ANSI B1.1 UNC Coarse Thread Series or ANSI B1.13M M Profile Metric Thread Series. Values for threaded rod types and associated nuts supplied by Hilti are provided here.

TABLE 3—SPECIFICATIONS AND PHYSICAL PROPERTIES OF COMMON STEEL REINFORCING BARS

REINFORCING BAR SPECIFICATION		Minimum specified ultimate strength, f_{uta}	Minimum specified yield strength, f_{ya}
ASTM A615 ¹ Gr. 60	psi	90,000	60,000
ASTM A013 GI. 60	(MPa)	(620)	(414)
ASTM A615 ¹ Gr. 40	psi	60,000	40,000
ASTM A013 GI. 40	(MPa)	(414)	(276)
ASTM A706 ² Gr. 60	psi	80,000	60,000
A31M A700 GI. 60	(MPa)	(550)	(414)
DIN 488 ³ BSt 500	MPa	550	500
DIN 400° DOL 500	(psi)	(79,750)	(72,500)
CAN/CSA-G30.18 ⁴ Gr. 400	MPa	540	400
CAN/CSA-G30.10 G1.400	(psi)	(78,300)	(58,000)

¹Standard Specification for Deformed and Plain Carbon Steel Bars for Concrete Reinforcement

Series. Values for threaded rod types and associated nuts supplied by Hilti are provided here.

2 Standard Specification for Alloy-Steel and Stainless Steel Bolting Materials for High-Temperature Service

3 Standard Specification for Carbon and Alloy Steel Externally Threaded Metric Fasteners

4 Mechanical properties of fasteners made of carbon steel and alloy steel — Part 1: Bolts, screws and studs

5 Standard Steel Specification for Stainless Steel Bolts, Hex Cap Screws, and Studs

6 Mechanical properties of corrosion-resistant stainless steel fasteners — Part 1: Bolts, screws and studs

7 Based on 2-in. (50 mm) gauge length except for A 193, which are based on a gauge length of 4d and ISO 898, which is based on 5d.

⁸Nuts of other grades and styles having specified proof load stresses greater than the specified grade and style are also suitable. Nuts must have specified proof load stresses equal to or greater than the minimum tensile strength of the specified threaded rod.

⁹Nuts for fractional rods.

²Standard Specification for Low Alloy Steel Deformed and Plain Bars for Concrete Reinforcement

³Reinforcing steel; reinforcing steel bars; dimensions and masses

⁴Billet-Steel Bars for Concrete Reinforcement

TABLE 4—SPECIFICATIONS AND PHYSICAL PROPERTIES OF FRACTIONAL AND METRIC HIS-N AND HIS-RN INSERTS

HILTI HIS-N AND HIS-RN INSERTS		Minimum specified ultimate strength, f_{uta}	Minimum specified yield strength, f_{ya}
Carbon Steel DIN EN 10277-3 11SMnPb30+c or DIN	psi	71,050	56,550
1561 9SMnPb28K	(MPa)	(490)	(390)
Stainless Steel	psi	101,500	50,750
EN 10088-3 X5CrNiMo 17-12-2	(MPa)	(700)	(350)

TABLE 5—SPECIFICATIONS AND PHYSICAL PROPERTIES OF COMMON BOLTS, CAP SCREWS AND STUDS FOR USE WITH HIS-N AND HIS-RN INSERTS^{1,2}

BOLT, CAP SCREW OR STUD SPECIFICATION		Minimum specified ultimate strength f _{uta}	Minimum specified yield strength 0.2 percent offset f_{ya}	f _{uta} /f _{ya}	Elongation, min.	Reduction of Area, min.	Specification for nuts ⁶	
ASTM A193 Grade B7	psi	125,000	105,000	1.119	16	50	ASTM A563 Grade DH	
ASTWI A 193 Glade Di	(MPa)	(862)	(724)	1.119	10	30	ASTIM ASOS GIAGE DIT	
SAE J429 ³ Grade 5	psi	120,000	92,000	1.30	14	35	SAE J995	
SAE J429° Grade 5	(MPa)	(828)	(634)	1.30	14	33	SAE J995	
ASTM A325 ⁴ ¹ / ₂ to 1-in.	psi	120,000	92,000	1.30	14	35	A563 C, C3, D, DH,	
ASTM A323 /2 to 1-iii.	(MPa)	(828)	(634)	1.30	14	33	DH3 Heavy Hex	
ASTM A193 ⁵ Grade B8M (AISI	psi	110,000	95,000	1.16	15	45	ASTM F594 ⁷	
316) for use with HIS-RN	(MPa)	(759)	(655)	1.10	15	45	Alloy Group 1, 2 or 3	
ASTM A193 ⁵ Grade B8T (AISI	psi	125,000	100,000	1.25	12	35	ASTM F594 ⁷	
321) for use with HIS-RN	(MPa)	(862)	(690)	1.23	12	ან	Alloy Group 1, 2 or 3	

¹Minimum Grade 5 bolts, cap screws or studs must be used with carbon steel HIS inserts.

²Only stainless steel bolts, cap screws or studs must be used with HIS-RN inserts.

³Mechanical and Material Requirements for Externally Threaded Fasteners

⁴Standard Specification for Structural Bolts, Steel, Heat Treated, 120/105 kgi Minimum Tensile Strength

Standard Specification for Alloy-Steel and Stainless Steel Bolting Materials for the Specification for Alloy-Steel and Stainless Steel Bolting Materials for the Specification for Alloy-Steel and Stainless Steel Bolting Materials for the Specification for Alloy-Steel and Stainless Steel Bolting Materials for the Specification for Alloy-Steel and Stainless Steel Bolting Materials for the Specification for Alloy-Steel and Stainless Steel Bolting Materials for the Specification for Alloy-Steel and Stainless Steel Bolting Materials for the Specification for Alloy-Steel and Stainless Steel Bolting Materials for the Specification for Alloy-Steel and Stainless Steel Bolting Materials for the Specification for Alloy-Steel and Stainless Steel Bolting Materials for the Specification for Alloy-Steel and Stainless Steel Bolting Materials for the Specification for Alloy-Steel and Stainless Steel Bolting Materials for the Specification for Alloy-Steel and Stainless Steel Bolting Materials for the Specification for Alloy-Steel and Stainless Steel Bolting Materials for the Specification for Alloy-Steel and Stainless Steel Bolting Materials for the Specification for Alloy-Steel and Stainless Steel Bolting Materials for the Specification for Alloy-Steel and Stainless Steel Bolting Materials for the Specification for the Specification for Alloy-Steel and Stainless Steel Bolting Materials for the Specification for the Specifica

⁷Nuts for stainless steel studs must be of the same alloy group as the specified bolt, cap screw, or stud.

Fractional Threaded Rod

Steel Strength

TABLE 6A—STEEL DESIGN INFORMATION FOR FRACTIONAL THREADED ROD

DESIG	N INFORMATION	Symbol	Units			Nomina	al rod diamete	er (in.) ¹						
DESIG	N IN ONINATION	Syllibol	Units	3/8	1/2	⁵ / ₈	3/4	⁷ / ₈	1	1 ¹ / ₄				
Rod O.		d	in.	0.375	0.5	0.625	0.75	0.875	1	1.25				
Rod O.	υ.	а	(mm)	(9.5)	(12.7)	(15.9)	(19.1)	(22.2)	(25.4)	(31.8)				
D. 1. (in.2	0.0775	0.1419	0.2260	0.3345	0.4617	0.6057	0.9691				
Rod eff	ective cross-sectional area	A_{se}	(mm ²)	(50)	(92)	(146)	(216)	(298)	(391)	(625)				
			lb	5,620	10,290	16,385	24,250	33,470	43,910	70,260				
	Nominal strength as governed by steel	N _{sa}	(kN)	(25.0)	(45.8)	(72.9)	(107.9)	(148.9)	(195.3)	(312.5)				
8-7	strength		lb	3,370	6,175	9,830	14,550	20,085	26,345	42,155				
868 38 2	3	V _{sa}	(kN)	(15.0)	(27.5)	(43.7)	(64.7)	(89.3)	(117.2)	(187.5)				
ISO 898-1 Class 5.8	Reduction for seismic shear	αv,seis	-	(1010)	(=::=)	(1911)	1.0	(00.0)	(*****	(10110)				
<u> </u>	Strength reduction factor ϕ for tension ²	φ	_				0.65							
	Strength reduction factor ϕ for shear ²	φ	-				0.60							
	Changin radiation factor \$ 101 areas	<i>'</i>	lb	9,685	17,735	28,250	41,810	57,710	75,710	121,135				
B7	Nominal strength as governed by steel	N _{sa}	(kN)	(43.1)	(78.9)	(125.7)	(186.0)	(256.7)	(336.8)	(538.8)				
33.	strength		lb	5,810	10,640	16,950	25,085	34,625	45,425	72,680				
A193	Strongth	V _{sa}	(kN)	(25.9)	(47.3)	(75.4)	(111.6)	(154.0)	(202.1)	(323.3)				
È	Reduction for seismic shear	001	- (KIN)	(23.9)	(47.5)	(13.4)	1.0	(134.0)	(202.1)	(323.3)				
ASTM	Strength reduction factor ϕ for tension ³	αv,seis ₄	-				0.75							
₹	Strength reduction factor ϕ for shear ³	ϕ					0.75							
	Strength reduction factor ϕ for shear-	φ	- lb	-	8,230	13,110	19.400	26,780	35.130	56.210				
4	Nominal strength as governed by steel	N _{sa}	(kN)	_	(36.6)	(58.3)	(86.3)	(119.1)	(156.3)	(250.0)				
F1554 36	strength		lb	-	4,940	7,865	11,640	16,070	21,080	33,725				
17 36	Strength	V_{sa}	(kN)	_	(22.0)	(35.0)	(51.8)	(71.5)	(93.8)	(150.0)				
ASTM Gr.	Reduction factor, seismic shear	α _{v.seis}	(KIN)	- (22.0) (35.0) (31.8) (71.3) (93.8) (
LS)	Strength reduction factor ϕ for tension ³	φ	-	0.75										
•	Strength reduction factor ϕ for shear ³	φ	-				0.65							
	Strength reduction factor ϕ for shear	Ψ	lb	-	10,645	16,950	25,090	34,630	45,430	72,685				
4	Nominal strength as governed by steel	N _{sa}	(kN)	_	(47.4)	(75.4)	(111.6)	(154.0)	(202.1)	(323.3)				
22	strength		lb	-	6,385	10,170	15,055	20,780	27,260	43,610				
F1554	ou ongui	V_{sa}	(kN)	_	(28.4)	(45.2)	(67.0)	(92.4)	(121.3)	(194.0)				
ASTM F	Reduction factor, seismic shear	α _{v,seis}	-		(20.1)	(1012)	1.0	(02)	(12110)	(10 110)				
S	Strength reduction factor ϕ for tension ³	φ	_				0.75							
_	Strength reduction factor ϕ for shear ³	φ	-				0.65							
	Strength reduction factor ϕ for shear	Ψ	lb	_	17,740	28,250	41,815	57,715	75,715	121,135				
4	Nominal strength as governed by steel	N _{sa}	(kN)	_	(78.9)	(125.7)	(186.0)	(256.7)	(336.8)	(538.8)				
55	strength		lb	-	10,645	16,950	25,090	34,630	45,430	72,680				
표 연	Strongth	V _{sa}	(kN)	_	(47.4)	(75.4)	(111.6)	(154.0)	(202.1)	(323.3)				
ASTM F1554 Gr. 105	Reduction factor, seismic shear	$\alpha_{v,seis}$	-		(/	(1.01.1)	1.0	(10110)	(===::)	(0=0.0)				
PS.	Strength reduction factor ϕ for tension ³	φ	-				0.75							
1	Strength reduction factor ϕ for shear ³	φ	-				0.65							
>	3		lb	7,750	14,190	22,600	28,435	39,245	51,485	-				
S	Nominal strength as governed by steel	N _{sa}	(kN)	(34.5)	(63.1)	(100.5)	(126.5)	(174.6)	(229.0)	-				
3, (SS	strength	.,	lb	4,650	8,515	13,560	17,060	23,545	30,890	-				
. 59 nle		V_{sa}	(kN)	(20.7)	(37.9)	(60.3)	(75.9)	(104.7)	(137.4)	-				
ASTM F593, CW Stainless	Reduction factor, seismic shear	$\alpha_{v,seis}$	-	, ,			.8	, ,	, ,	-				
E	Strength reduction factor ϕ for tension ²	φ	-			0.	65			-				
ĕ	Strength reduction factor φ for shear ²	φ	-			0.	60			-				
	,	<i>'</i>	lb				-			55,240				
	Nominal strength as governed by steel	N _{sa}	(kN)				-			(245.7)				
33, SS	က် ဖွဲ့ grength		Ìb	/										
C C as			(kN)				-			(147.4)				
strength as governed by steel strength as strength as governed by steel strength strength as governed by steel strength as gov			-				-			0.8				
1 E ⊗ S α	Strength reduction factor ϕ for tension ²	φ	-	-										
₹ ~	Strength reduction factor ϕ for shear ²	φ	-							0.65				
L	zg roadollori lactor y to. oriodi	r		l .						0.00				

For SI: 1 inch = 25.4 mm, 1 lbf = 4.448 N. For **pound-inch** units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf

¹Values provided for common rod material types are based on specified strengths and calculated in accordance with ACI 318-14 Eq. (17.4.1.2) and Eq. (17.5.1.2b) or ACI 318-11 Eq. (D-2) and Eq. (D-29), as applicable. Nuts and washers must be appropriate for the rod. ²For use with the load combinations of IBC Section 1605.2, ACI 318-14 5.3 or ACI 318-11 9.2, as applicable, as set forth in ACI 318-14 17.3.3 or ACI 318-11 D.4.3,

For use with the load combinations of IBC Section 1605.2, ACI 318-14 5.3 or ACI 318-11 9.2, as applicable, as set forth in ACI 318-14 17.3.3 or ACI 318-11 D.4.3 as applicable. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of ϕ must be determined in accordance with ACI 318-11 D.4.4. Values correspond to a brittle steel element.

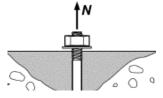
³For use with the load combinations of IBC Section 1605.2, ACI 318-14 5.3 or ACI 318-11 9.2, as applicable, as set forth in ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of *∮* must be determined in accordance with ACI 318-11 D.4.4. Values correspond to a ductile steel element.

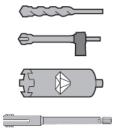
Fractional Reinforcing Bars

TABLE 6B—STEEL DESIGN INFORMATION FOR FRACTIONAL REINFORCING BARS

DES	IGN INFORMATION	Symbol	Units			Nomina	al Reinforci	ng bar size	(Rebar)				
DEG	ION IN ONIMATION	Cymbol	Oilles	#3	#4	#5	#6	#7	#8	#9	#10		
Nom	inal bar diameter	d	in.	3/8	1/2	⁵ / ₈	3/4	7/8	1	1 ¹ / ₈	1 ¹ / ₄		
INOII	ililai bai diametei	u	(mm)	(9.5)	(12.7)	(15.9)	(19.1)	(22.2)	(25.4)	(28.6)	(31.8)		
Por	effective cross-sectional area	Ase	in. ²	0.11	0.2	0.31	0.44	0.6	0.79	1.0	1.27		
Dai	enective cross-sectional area	Ase	(mm ²)	(71)	(129)	(200)	(284)	(387)	(510)	(645)	(819)		
		Nsa	lb	6,600	12,000	18,600	26,400	36,000	47,400	60,000	76,200		
2	Nominal strength as governed by steel	IVsa	(kN)	(29.4)	(53.4)	(82.7)	(117.4)	(160.1)	(210.9)	(266.9)	(339.0)		
A615	strength	V _{sa}	lb	3,960	7,200	11,160	15,840	21,600	28,440	36,000	45,720		
M A		v _{sa}	(kN)	(17.6)	(32.0)	(49.6)	(70.5)	(96.1)	(126.5)	(160.1)	(203.4)		
STM	Reduction for seismic shear	$lpha_{V,seis}$	-		0.70								
₹ `	Strength reduction factor ϕ for tension ²	ϕ	-	0.65									
	Strength reduction factor ϕ for shear ²	ϕ	-	0.60									
		N _{sa}	lb	9,900	18,000	27,900	39,600	54,000	71,100	90,000	114,300		
2	Nominal strength as governed by steel	IVsa	(kN)	(44.0)	(80.1)	(124.1)	(176.2)	(240.2)	(316.3)	(400.4)	(508.5)		
A615	strength	Vsa	lb	5,940	10,800	16,740	23,760	32,400	42,660	54,000	68,580		
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		V sa	(kN)	(26.4)	(48.0)	(74.5)	(105.7)	(144.1)	(189.8)	(240.2)	(305.1)		
STM	Reduction for seismic shear	$\alpha_{V,seis}$	-				0.	70					
∢`	Strength reduction factor ϕ for tension ²	φ	-				0.	65					
	Strength reduction factor ϕ for shear ²	ϕ	-				0.	60					
		N _{sa}	lb	8,800	16,000	24,800	35,200	48,000	63,200	80,000	101,600		
9	Nominal strength as governed by steel	IVsa	(kN)	(39.1)	(71.2)	(110.3)	(156.6)	(213.5)	(281.1)	(355.9)	(452.0)		
A706	strength	V _{sa}	lb	5,280	9,600	14,880	21,120	28,800	37,920	48,000	60,960		
Σ δ		V sa	(kN)	(23.5)	(42.7)	(66.2)	(94.0)	(128.1)	(168.7)	(213.5)	(271.2)		
STM	Reduction for seismic shear	αv,seis					0.	70					
ă,	Strength reduction factor ϕ for tension ³	φ				•	0.	75		•			
	Strength reduction factor ϕ for shear ³	φ		0.65									

For SI: 1 inch = 25.4 mm, 1 lbf = 4.448 N. For pound-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf


¹ Values provided for common rod material types are based on specified strengths and calculated in accordance with ACI 318-14 Eq. (17.4.1.2) and Eq (17.5.1.2b)


or ACI 318-11 Eq. (D-2) and Eq. (D-29). Nuts and washers must be appropriate for the rod.

For use with the load combinations of IBC Section 1605.2, ACI 318-14 5.3 or ACI 318-11 9.2, as set forth in ACI 318-14 17.3.3 or ACI 318-11 D.4.3. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of ϕ must be determined in accordance with ACI 318-11 D.4.4. Values correspond to a

³ For use with the load combinations of IBC Section 1605.2, ACI 318-14 5.3 or ACI 318-11 9.2, as set forth in ACI 318-14 17.3.3 or ACI 318-11 D.4.3. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of *ϕ* must be determined in accordance with ACI 318-11 D.4.4. Values correspond to a ductile steel element.

Fractional Threaded Rod and **Reinforcing Bars**

Concrete Breakout Strength

Carbide Bit or Hilti Hollow Carbide Bit Diamond Core Bit + Roughening Tool, or Diamond Core Bit

TABLE 7—CONCRETE BREAKOUT DESIGN INFORMATION FOR FRACTIONAL THREADED ROD AND REINFORCING BARS ALL DRILLING METHODS¹

						Nomina	l rod dia	meter (i	n.) / Reir	nforcing	bar size)		
DESIGN INFORMATION	Symbol	Units	³/ ₈ or #3	1/2	#4	5/8	#5	3/4	#6	⁷ / ₈	#7	1 or #8	#9	1 ¹ / ₄ or #10
Effectiveness factor	k c.cr	in-lb						-	7					
for cracked concrete	110,01	(SI)						`	.1)					
Effectiveness factor for uncracked	k _{c.uncr}	in-lb						_	4					
concrete	N c,uncr	(SI)						(1	0)					
Minimum	h _{ef.min}	in.	23/8	23/4	23/8	3 ¹ / ₈	3	31/2	3	31/2	33/8	4	41/2	5
Embedment	1161,111111	(mm)	(60)	(70)	(60)	(79)	(76)	(89)	(76)	(89)	(85)	(102)	(114)	(127)
Maximum	h _{ef.max}	in.	71/2	10	10	12 ¹ / ₂	12 ¹ / ₂	15	15	17 ¹ / ₂	17 ¹ / ₂	20	22 ¹ / ₂	25
Embedment	l let,max	(mm)	(191)	(254)	(254)	(318)	(318)	(381)	(381)	(445)	(445)	(508)	(572)	(635)
Min. anchor spacing ³	6	in.	1 ⁷ / ₈	$2^{1}/_{2}$	21/2	31/8	31/8	33/4	33/4	$4^{3}/_{8}$	4 ³ / ₈	5	5 ⁵ / ₈	61/4
Willi. allerior spacing	nor spacing ³ S _{min}	(mm)	(48) (64) (64) (79) (79) (95) (95) (111) (111) (127) (143) (159)								(159)			
Min. edge distance ³	Cmin	-	5	id; or see	e Section	1 4.1.9 of	this rep	ort for de	sign with	reduce	d minimu	ım edge	distance	s
Minimum concrete	h _{min}	in.		$h_{ef} + 1^{1}/$	•					h _{ef} + 2d ₀	(4)			
thickness		(mm)		$(h_{ef} + 30)$	<u>')</u>									
Critical edge distance – splitting (for uncracked concrete)	C _{ac}	-					See See	ction 4.1	.10 of thi	s report.				
Strength reduction factor for tension, concrete failure modes, Condition B ²	φ	-						0.	65					
Strength reduction factor for shear, concrete failure modes, Condition B ²	φ	-						0.	70					

For SI: 1 inch = 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa.

For pound-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi

¹Additional setting information is described in Figure 9A and 9B, Manufacturers Printed Installation Instructions (MPII). ²Values provided for post-installed anchors under Condition B without supplementary reinforcement as defined in ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as

³For installations with 1³/₄-inch edge distance, refer to Section 4.1.9 for spacing and maximum torque requirements.

 $^{^4}$ d_0 = hole diameter.

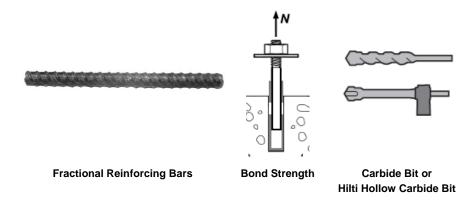


TABLE 8—BOND STRENGTH DESIGN INFORMATION FOR FRACTIONAL REINFORCING BARS IN HOLES DRILLED WITH A HAMMER DRILL AND CARBIDE BIT (OR HILTI HOLLOW CARBIDE DRILL BIT)1

DECK	SNI INIT	CORMATION	Cumbal	Unita			No	minal reinfo	orcing bar	size		
DESIG	JN INF	ORMATION	Symbol	Units	#3	#4	#5	#6	#7	#8	#9	#10
Minim	um En	nbedment	h	in.	23/8	23/8	3	3	33/8	4	4½	5
IVIIIIIII	um Em	ibeament	h _{ef,min}	(mm)	(60)	(60)	(76)	(76)	(85)	(102)	(114)	(127)
Movin	oum Er	nbedment	h .	in.	7½	10	12½	15	17½	20	22½	25
IVIAXIII	IUIII EI	nbeament	h _{ef,max}	(mm)	(191)	(254)	(318)	(381)	(445)	(508)	(572)	(635)
pe	ure 2	Characteristic bond strength	_	psi	1,350	1,360	1,390	1,410	1,410	1,420	1,390	1,340
urat	eratu Ie A	in cracked concrete	Tk,cr	(MPa)	(9.3)	(9.4)	(9.6)	(9.7)	(9.7)	(9.8)	(9.6)	(9.3)
Dry concrete and Water Saturated Concrete	Temperature range A ²	Characteristic bond strength	_	psi	1,770	1,740	1,720	1,690	1,670	1,640	1,620	1,590
iter e	Te	in uncracked concrete	$\tau_{k,uncr}$	(MPa)	(12.2)	(12.0)	(11.9)	(11.7)	(11.5)	(11.3)	(11.2)	(11.0)
and Wat Concrete	are 2	Characteristic bond strength	_	psi	930	940	960	970	980	980	960	930
and	erati e B	in cracked concrete	T _{k,cr}	(MPa)	(6.4)	(6.5)	(6.6)	(6.7)	(6.7)	(6.8)	(6.6)	(6.4)
ete (Temperature range B ²	Characteristic bond strength		psi	1,220	1,200	1,190	1,170	1,150	1,130	1,120	1,100
oncr	in uncracked concrete		Tk,uncr	(MPa)	(8.4)	(8.3)	(8.2)	(8.1)	(7.9)	(7.8)	(7.7)	(7.6)
ς	Anchor Category Strongth Poduction factor		-	-	1	1	1	1	1	1	1	1
D	- Strength Reduction factor		$\phi_{d,}\phi_{ m ws}$	-	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65
	ure 2	Characteristic bond strength	_	psi	1,000	1,010	1,040	1,060	1,070	1,090	1,070	1,050
	e A	in cracked concrete	Tk,cr	(MPa)	(6.9)	(6.9)	(7.2)	(7.3)	(7.4)	(7.5)	(7.4)	(7.2)
an.	Temperature range A ²	Characteristic bond strength	Tk,uncr	psi	1,300	1,290	1,290	1,280	1,270	1,260	1,240	1,240
Water-filled hole	Te	in uncracked concrete	Tk,uncr	(MPa)	(9.0)	(8.9)	(8.9)	(8.8)	(8.7)	(8.7)	(8.6)	(8.6)
lled	n.e	Characteristic bond strength	_	psi	690	700	720	730	740	750	740	720
er-fi	Temperature range B ²	in cracked concrete	Tk,cr	(MPa)	(4.7)	(4.8)	(5.0)	(5.0)	(5.1)	(5.2)	(5.1)	(5.0)
Nati	mpera	Characteristic bond strength	_	psi	900	890	890	880	870	870	860	860
	Te	in uncracked concrete	$\tau_{k,uncr}$	(MPa)	(6.2)	(6.1)	(6.1)	(6.1)	(6.0)	(6.0)	(5.9)	(5.9)
	Anch	or Category	-	-	3	3	3	3	3	3	3	3
	Strer	ngth Reduction factor	$\phi_{ m wf}$	-	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45
	z ILe	Characteristic bond strength	_	psi	860	890	920	940	960	990	970	980
	Temperature range A ²	in cracked concrete	Tk,cr	(MPa)	(5.9)	(6.1)	(6.3)	(6.5)	(6.6)	(6.9)	(6.7)	(6.8)
ete	mpe	Characteristic bond strength	_	psi	1,140	1,130	1,140	1,140	1,140	1,150	1,130	1,150
ncr		in uncracked concrete	Tk,uncr	(MPa)	(7.9)	(7.8)	(7.9)	(7.9)	(7.9)	(7.9)	(7.8)	(8.0)
ορ	ure 2	Characteristic bond strength	_	psi	590	610	630	650	660	690	670	680
Submerged concrete	Temperature range B ²	in cracked concrete	Tk,cr	(MPa)	(4.1)	(4.2)	(4.4)	(4.5)	(4.6)	(4.7)	(4.6)	(4.7)
bme	mpe	Characteristic bond strength		psi	790	780	790	790	790	790	790	800
Sul	Te	in uncracked concrete	Tk,uncr	(MPa)	(5.4)	(5.4)	(5.4)	(5.4)	(5.4)	(5.5)	(5.4)	(5.5)
	Anchor Category		-	-	3	3	3	3	3	3	3	3
	Strength Reduction factor			-	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45
Redu	ction fo	r seismic tension	αn,seis	-	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9

For **SI**: 1 inch \equiv 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa.

For pound-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi


Bond strength values correspond to concrete compressive strength $f'_c = 2,500$ psi (17.2 MPa) [minimum of 24 MPa is required under ADIBC Appendix L, Section 5.1.1]. For concrete compressive strength, f'_c , between 2,500 psi (17.2 MPa) and 8,000 psi (55.2 MPa), the tabulated characteristic bond strength may be increased by a factor of $(f'_c/2,500)^{0.25}$ for uncracked concrete [For SI: $(f'_c/17.2)^{0.25}$] and $(f'_c/2,500)^{0.15}$ for cracked concrete [For SI: $(f'_c/17.2)^{0.15}$]. See Section 4.1.4 of this report for bond strength determination.

²Temperature range A: Maximum short term temperature = 130°F (55°C), Maximum long term temperature = 110°F (43°C). Temperature range B: Maximum short term temperature = 176°F (80°C), Maximum long term temperature = 110°F (43°C).

Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.

Fractional Reinforcing Bars

Bond Strength

Diamond Core Bit + Roughening Tool

TABLE 9—BOND STRENGTH DESIGN INFORMATION FOR FRACTIONAL REINFORCING BARS IN HOLES CORE DRILLED WITH A DIAMOND CORE BIT AND ROUGHENED WITH A HILTI ROUGHENING TOOL¹

DESIGN	INFORMATION		Cumbal	Unito			Nomir	nal reinforcing l	oar size
DESIGN	INFORMATION		Symbol	Units	#5	#6	#7	#8	#9
Minimum	Embedment		h _{ef,min}	in.	3	3	33/8	4	41/2
William	Linbeament		i ier,min	(mm)	(76)	(76)	(85)	(102)	(115)
Maximum	n Embedment		h _{ef,max}	in.	12½	11 ¼	17½	20	22½
Maximum	Linbeament		i ier,max	(mm)	(318)	(286)	(445)	(508)	(573)
ste		Characteristic bond strength in cracked	T _{k.cr}	psi	970	990	990	995	970
cre	Temperature	concrete	-11,07	(MPa)	(6.7)	(6.8)	(6.8)	(6.9)	(6.7)
d concrete	range A ²	Characteristic bond strength in uncracked	Tk,uncr	psi	1,720	1,690	1,670	1,640	1,620
ate		concrete		(MPa)	(11.9)	(11.7)	(11.5)	(11.3)	(11.2)
saturated		Characteristic bond strength in cracked	T _{k.cr}	psi	670	680	680	690	670
ē	Temperature	concrete	,	(MPa)	(4.6)	(4.7)	(4.7)	(4.8)	(4.6)
d water	range B ²	Characteristic bond strength in uncracked	Tk.uncr	psi	1,190	1,170	1,150	1,130	1,120
and		concrete	,	(MPa)	(8.2)	(8.1)	(7.9)	(7.8)	(7.7)
Dry	Anchor Catego	ory	-	-	1	1	1	1	1
	Strength Redu	ction factor	φ _d , φ _{ws}	-	0.65	0.65	0.65	0.65	0.65
Reduction	uction for seismic tension			-	0.9	0.9	0.9	0.9	0.9

For **SI**: 1 inch \equiv 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa.

For pound-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi

Temperature range B: Maximum short term temperature = 176°F (80°C), Maximum long term temperature = 110°F (43°C).

Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.

Fractional Reinforcing Bars

Bond Strength

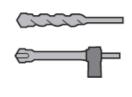
Diamond Core Bit

TABLE 10—BOND STRENGTH DESIGN INFORMATION FOR FRACTIONAL REINFORCING BARS IN HOLES CORE DRILLED WITH A DIAMOND CORE BIT1

DEOL	011 INFORMATION		0				Nomi	nal reinfo	rcing ba	r size		
DESI	GN INFORMATION		Symbol	Units	#3	#4	#5	#6	#7	#8	#9	#10
Minim	num Embedment		h	in.	23/8	2 ³ / ₈	3	3	33/8	4	41/2	5
IVIIIIIII	millian Embedhent		h _{ef,min}	(mm)	(60)	(60)	(76)	(76)	(85)	(102)	(114)	(127)
Maxim	faximum Embedment		6	in.	7½	10	12½	15	17½	20	22½	25
Maxii	laximum Embedment		h _{ef,max}	(mm)	(191)	(254)	(318)	(381)	(445)	(508)	(572)	(635)
e t	Temperature Characteristic bond strength		_	psi	1,150	1,150	1,150	1,150	1,150	1,150	1,150	1,150
water	range A ²	in uncracked concrete	Tk,uncr	(MPa)	(8.0)	(8.0)	(8.0)	(8.0)	(8.0)	(8.0)	(8.0)	(8.0)
and wa	Temperature	Characteristic bond strength	$ au_{k.uncr}$	psi	800	800	800	800	800	800	800	800
	range B ²	in uncracked concrete	r,uncr	(MPa)	(5.5)	(5.5)	(5.5)	(5.5)	(5.5)	(5.5)	(5.5)	(5.5)
Dry	스 류 Anchor Category		-	-	2	2	3	3	3	3	3	3
v.	Strength Reduction factor		φ _d , φ _{ws}	-	0.55	0.55	0.45	0.45	0.45	0.45	0.45	0.45

For **SI**: 1 inch \equiv 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa.

For pound-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi Bond strength values correspond to concrete compressive strength $f_c = 2,500$ psi (17.2 MPa) [minimum of 24 MPa is required under ADIBC Appendix L, Section 5.1.1]. For concrete compressive strength, f'c, between 2,500 psi (17.2 MPa) and 8,000 psi (55.2 MPa), the tabulated characteristic bond strength may be increased by a factor of $(f_c^*/2,500)^{0.25}$ for uncracked concrete. [For SI: $(f_c^*/47.2)^{0.25}$]. See Section 4.1.4 of this report for bond strength determination. ²Temperature range A: Maximum short term temperature = 130°F (55°C), Maximum long term temperature = 110°F (43°C). Temperature range B: Maximum short term temperature = 176°F (80°C), Maximum long term temperature = 110°F (43°C).


Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.

Bond strength values correspond to concrete compressive strength in the range 2,500 psi ≤ f'c ≤ 8,000 psi) [minimum of 24 MPa is required under ADIBC Appendix L, Section 5.1.1].

²Temperature range A: Maximum short term temperature = 130°F (55°C), Maximum long term temperature = 110°F (43°C).

Fractional Threaded Rod

Bond Strength

Carbide Bit or Hilti Hollow Carbide Bit

TABLE 11—BOND STRENGTH DESIGN INFORMATION FOR FRACTIONAL THREADED ROD IN HOLES DRILLED WITH A HAMMER DRILL AND CARBIDE BIT (OR HILTI HOLLOW CARBIDE DRILL BIT)1

	DES	SIGN INFORMATION	Symbol	Units			Nomin	al rod dian	neter (in.)		
					3/8	1/2	⁵ / ₈	3/4	⁷ / ₈	1	11/4
Minimi	ım Embe	dment	h _{ef.min}	in.	2 ³ / ₈	23/4	31/8	31/2	31/2	4	5
	בוווסט	Minorit	nei,min	(mm)	(60)	(70)	(79)	(89)	(89)	(102)	(127)
Maxim	um Embe	edment	h _{ef,max}	in.	71/2	10	12½	15	17½	20	25
Maxim	ann Embe	eument	i ier,max	(mm)	(191)	(254)	(318)	(381)	(445)	(508)	(635)
	z re	Characteristic bond strength	_	psi	1,280	1,270	1,260	1,250	1,240	1,240	1,180
	Temperature range A²	in cracked concrete	Т _к ,сr	(MPa)	(8.8)	(8.7)	(8.7)	(8.6)	(8.6)	(8.5)	(8.1)
ater	mpe	Characteristic bond strength	_	psi	2,380	2,300	2,210	2,130	2,040	1,960	1,790
Dry concrete and Water Saturated Concrete	Te _	in uncracked concrete	$\tau_{\kappa,uncr}$	(MPa)	(16.4)	(15.8)	(15.3)	(14.7)	(14.1)	(13.5)	(12.4)
Cor	I.e	Characteristic bond strength	_	psi	880	870	870	860	860	850	810
crete	ratu e B	in cracked concrete	$ au_{\kappa,cr}$	(MPa)	(6.1)	(6.0)	(6.0)	(5.9)	(5.9)	(5.9)	(5.6)
con	Temperature range B²	Characteristic bond strength		psi	1,640	1,590	1,530	1,470	1,410	1,350	1,240
ους Ϋ́	Te	in uncracked concrete	$\tau_{\kappa,uncr}$	(MPa)	(11.3)	(10.9)	(10.5)	(10.1)	(9.7)	(9.3)	(8.5)
_	Anchoi	r Category	-	-	1	1	1	1	1	1	1
	Streng	th Reduction factor	фа, фws	φδ, φωσ	0.65	0.65	0.65	0.65	0.65	0.65	0.65
	ē	Characteristic bond strength		psi	940	940	940	940	940	950	920
	ratu e A²	in cracked concrete	$\tau_{\kappa,cr}$	(MPa)	(6.5)	(6.5)	(6.5)	(6.5)	(6.5)	(6.5)	(6.4)
	Temperature range A²	Characteristic bond strength	τ _{κ,uncr}	psi	1,760	1,700	1,660	1,600	1,550	1,500	1,400
Water-filled hole	Je _	in uncracked concrete		(MPa)	(12.1)	(11.7)	(11.4)	(11.0)	(10.7)	(10.4)	(9.7)
edi	ē	Characteristic bond strength	$\mathcal{T}_{\mathcal{K},C\mathcal{I}}$	psi	650	650	650	650	650	650	640
er-fill	Temperature range B ²	in cracked concrete		(MPa)	(4.5)	(4.5)	(4.5)	(4.5)	(4.5)	(4.5)	(4.4)
Nate	empera range E	Characteristic bond strength		psi	1,210	1,170	1,140	1,110	1,070	1,040	970
	Je J	in uncracked concrete	$ au_{\kappa,uncr}$	(MPa)	(8.4)	(8.1)	(7.9)	(7.6)	(7.4)	(7.1)	(6.7)
	Anchoi	r Category	-	-	3	3	3	3	3	3	3
	Streng	th Reduction factor	фwf	-	0.45	0.45	0.45	0.45	0.45	0.45	0.45
	ē	Characteristic bond strength		psi	820	830	830	840	850	860	860
	Temperature range A ²	in cracked concrete	$ au_{\kappa,cr}$	(MPa)	(5.7)	(5.7)	(5.8)	(5.8)	(5.9)	(5.9)	(5.9)
ge ge	mpe	Characteristic bond strength		psi	1,530	1,500	1,470	1,430	1,400	1,370	1,300
ncre	Je _	in uncracked concrete	$ au_{\kappa,uncr}$	(MPa)	(10.6)	(10.3)	(10.1)	(9.9)	(9.6)	(9.4)	(9.0)
Submerged concrete	ē	Characteristic bond strength		psi	570	570	580	580	590	590	590
rgec	Temperature range B ²	in cracked concrete	$ au_{\kappa,cr}$	(MPa)	(3.9)	(3.9)	(4.0)	(4.0)	(4.0)	(4.1)	(4.1)
bme	mpe	Characteristic bond strength		psi	1,060	1,030	1,010	990	960	940	900
Sul	Tel	in uncracked concrete	$ au_{\kappa, uncr}$	(MPa)	(7.3)	(7.1)	(7.0)	(6.8)	(6.6)	(6.5)	(6.2)
	Anchoi	r Category	-	-	3	3	3	3	3	3	3
	Streng	th Reduction factor	фиw	-	0.45	0.45	0.45	0.45	0.45	0.45	0.45
Reduct	tion for se	eismic tension	CLN,seis	-	0.92	0.93	0.95	1	1	1	1

For **SI**: 1 inch \equiv 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa. For pound-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi

Bond strength values correspond to concrete compressive strength f_c = 2,500 psi (17.2 MPa) [minimum of 24 MPa is required under ADIBC Appendix L, Section 5.1.1]. For concrete compressive strength, f_c , between 2,500 psi (17.2 MPa) and 8,000 psi (55.2 MPa), the tabulated characteristic bond strength may be increased by a factor of $(f_c/2,500)^{0.25}$ for uncracked concrete [For SI: $(f_c/17.2)^{0.25}$] and $(f_c/2,500)^{0.15}$ for cracked concrete [For SI: $(f_c/17.2)^{0.15}$]. See Section 4.1.4 of this report for bond strength determination.

2Temperature range A: Maximum short term temperature = 130°F (55°C), Maximum long term temperature = 110°F (43°C).

Temperature range B: Maximum short term temperature = 176°F (80°C), Maximum long term temperature = 110°F (43°C).

Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.

Fractional Threaded Rod

Bond Strength

Diamond Core Bit + **Roughening Tool**

TABLE 12—BOND STRENGTH DESIGN INFORMATION FOR U.S. CUSTOMARY UNIT THREADED RODS IN HOLES CORE DRILLED WITH A DIAMOND CORE BIT AND ROUGHENED WITH A HILTI ROUGHENING TOOL¹

						Nomina	I rod diamet	er (in.)	
DESIG	GN INFORMATIO	N .	Symbol	Units	5/8	3/4	⁷ / ₈	1	11/4
Minim	num Embedment		h _{ef.min}	in.	31/8	31/2	3½	4	5
IVIIIIIII	idili Embedinent		r rer, min	(mm)	(79)	(89)	(89)	(102)	(127)
Massin	num Embedment		6	in.	12½	11¼	17½	20	25
Maxim	num Embeament		h _{ef,max}	(mm)	(318)	(286)	(445)	(508)	(635)
ete		Characteristic bond strength in		psi	880	875	870	870	825
concrete	Temperature range A ² Characteristic bond strength in cracked concrete Characteristic bond strength in	Tk,cr	(MPa)	(6.1)	(6.0)	(6.0)	(6.0)	(5.7)	
		cracked concrete		psi	2,210	2,130	2,040	1,960	1,790
saturated		uncracked concrete	Tk,uncr	(MPa)	(15.3)	(14.7)	(14.1)	(13.5)	(12.4)
atura		Characteristic bond strength in		psi	610	605	605	600	570
SS TS	Temperature	cracked concrete	Tk,cr	(MPa)	(4.2)	(4.2)	(4.2)	(4.1)	(3.9)
water	range B ²	Characteristic bond strength in		psi	1,530	1,470	1,410	1,350	1,240
and v		uncracked concrete	Tk,uncr	(MPa)	(10.5)	(10.1)	(9.7)	(9.3)	(8.5)
Z	Anchor Categor	y	-	-	1	1	1	1	1
Dr	Strength Reduc	tion factor	φ _d , φ _{ws}	ı	0.65	0.65	0.65	0.65	0.65
Redu	duction for seismic tension		α <i>N,seis</i>	-	0.95	1	1	1	1

For SI: 1 inch = 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa.

For pound-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi

Bond strength values correspond to concrete compressive strength in the range 2,500 psi ≤ fc ≤ 8,000 psi [minimum of 24 MPa is required under ADIBC Appendix L, Section 5.1.1].

Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.

Fractional Threaded Rod

Bond Strength

Diamond Core Bit

TABLE 13—BOND STRENGTH DESIGN INFORMATION FOR FRACTIONAL THREADED RODS IN HOLES CORE DRILLED WITH A DIAMOND CORE BIT¹

				******	, , Di,	D COILE DI					
DESIG	NUNEODMATIO	NI	Cumbal	Units			Nomin	al rod diame	ter (in.)		
DESIG	N INFORMATIO	N	Symbol	Units	3/8	1/2	⁵ / ₈	3/4	⁷ / ₈	1	1 1/4
Minim	[]		-	in.	2 ³ / ₈	2 ³ / ₄	31/8	31/2	31/2	4	5
Minimu	ım Embedment		h _{ef,min}	(mm)	(60)	(70)	(79)	(89)	(89)	(102)	(127)
Maxim	um Embedment		6	in.	7½	10	12½	15	17½	20	25
Maxim	um Embeament		h _{ef,max}	(mm)	(191)	(254)	(318)	(381)	(445)	(508)	(635)
	Temperature	Characteristic bond		psi	1,550	1,550	1,550	1,550	1,550	1,550	1,550
rete and aturated	range A ²	strength in uncracked concrete	$ au_{k,uncr}$	(MPa)	(10.7)	(10.7)	(10.7)	(10.7)	(10.7)	(10.7)	(10.7)
atur	Temperature	Characteristic bond		psi	1,070	1,070	1,070	1,070	1,070	1,070	1,070
Dry concrete Water satura	range B ²	strength in uncracked concrete	Tk,uncr	(MPa)	(7.4)	(7.4)	(7.4)	(7.4)	(7.4)	(7.4)	(7.4)
Dry	Anchor Catego	ry	-	-	2	2	3	3	3	3	3
	Strength Reduc	ction factor	φ _d , φ _{ws}	-	0.55	0.55	0.45	0.45	0.45	0.45	0.45

For **SI**: 1 inch \equiv 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa.

For pound-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi

¹Bond strength values correspond to concrete compressive strength $f_c = 2,500$ psi (17.2 MPa) [minimum of 24 MPa is required under ADIBC Appendix L, Section The first values correspond to concrete compressive strength, f_c , between 2,500 psi (17.2 MFa) inflammand 24 MFa is required under ADBO Appendix E, decided by a factor of $(f_c/2,500)^{0.25}$ for uncracked concrete [For SI: $(f_c/17.2)^{0.25}$]. See Section 4.1.4 of this report for bond strength determination.

2 Temperature range A: Maximum short term temperature = 130°F (55°C), Maximum long term temperature = 110°F (43°C).

Temperature range B: Maximum short term temperature = 176°F (80°C), Maximum long term temperature = 110°F (43°C).

Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.

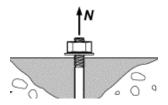
Temperature range A: Maximum short term temperature = 130°F (55°C), Maximum long term temperature = 110°F (43°C). Temperature range B: Maximum short term temperature = 176°F (80°C), Maximum long term temperature = 110°F (43°C).

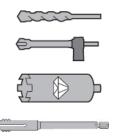
Metric Threaded Rod and EU Metric **Reinforcing Bars**

Steel Strength

TABLE 14—STEEL DESIGN INFORMATION FOR METRIC THREADED ROD AND EU METRIC REINFORCING BARS

DECL	ON INCORMATION	Committee of	Hadea				Nomina	I rod diame	ter (mm) ¹			
DESI	GN INFORMATION	Symbol	Units	8	10	12	1		20	24	27	30
Rod C	Outside Diameter	d	mm (in.)	8 (0.31)	10 (0.39)	12 (0.47) (0.0		20).79)	24 (0.94)	27 (1.06)	30 (1.18)
Rod e	ffective cross-sectional area	Ase	mm² (in.²)	36.6 (0.057)	58.0 (0.090)	84.3			245 .380)	353 (0.547)	459 (0.711)	561 (0.870)
			kN	18.3	29.0	42.0			22.5	176.5	229.5	280.5
	Nominal strength as	N _{sa}	(lb)	(4,114)	(6,519)	(9,470				(39,679)	(51,594)	(63,059)
-1	governed by steel strength	V _{sa}	kN	11.0	14.5	25.5	47	7.0 7	73.5	106.0	137.5	168.5
ISO 898-1 Class 5.8		- 00	(lb)	(2,648)	(3,260)	(5,68	5) (10,	588) (16	5,523) ((23,807)	(30,956)	(37,835)
ISO Clas	Reduction for seismic shear	αv,seis	-					1.00				
	Strength reduction factor for tension ²	φ	ı					0.65				
	Strength reduction factor for shear ²	φ	•					0.60				
			kN	29.3	46.5	67.5	12	5.5 1	96.0	282.5	367.0	449.0
	Nominal strength as	N _{sa}	(lb)	(6,582)	(10,431)	(15,16	1) (28,	236) (44	1,063)	(63,486)	(82,550)	(100,894)
	governed by steel strength		kN	17.6	23.0	40.5	75	5.5 1	17.5	169.5	220.5	269.5
ISO 898-1 Class 8.8		V _{sa}	(lb)	(3,949)	(5,216)	(9,09	7) (16,	942) (26	5,438) ((38,092)	(49,530)	(60,537)
ISO	Reduction for seismic shear	αv,seis	-					1.00				
	Strength reduction factor for tension ²	φ	•					0.65				
	Strength reduction factor for shear ²	φ						0.60				
		Λ/	kN	25.6	40.6	59.0	10:	9.9 1	71.5	247.1	229.5	280.5
	Nominal strength as	N _{sa}	(lb)	(5,760)	(9,127)	(13,26	6) (24,	706) (38	3,555) ((55,550)	(51,594)	(63,059)
3506-1 Class 4 Stainless³	governed by steel strength	V _{sa}	kN	15.4	20.3	35.4	65	5.9	02.9	148.3	137.7	168.3
506-1 Cla Stainless ³		• 34	(lb)	(3,456)	(4,564)	(7,960	(14,	824) (23	3,133) ((33,330)	(30,956)	(37,835)
O 350 A4 Sta	Reduction for seismic shear	αv,seis	-					0.80				
ISO A4	Strength reduction factor for tension ²	φ	ı					0.65				
	Strength reduction factor for shear ²	ϕ	-					0.60				
DESI	GN INFORMATION	Symbol	Units			N	ominal rein	forcing bar	diameter (n	nm)		
				10	12	14	16	20	25	28	30	32
Nomi	nal bar diameter	d	mm (in.)	10.0 (0.394)	12.0 (0.472)	14.0 (0.551)	16.0 (0.630)	20.0 (0.787)	25.0 (0.984)	28.0 (1.102)	30.0 (1.224)	32.0 (1.260)
		_	mm ²	78.5	113.1	153.9	201.1	314.2	490.9	615.8	706.9	804.2
Bar et	fective cross-sectional area	Ase	(in.²)	(0.122)	(0.175)	(0.239)	(0.312)	(0.487)	(0.761)	(0.954)	(1.096)	(1.247)
		N _{sa}	kN	43.0	62.0	84.5	110.5	173.0	270.0	338.5	388.8	442.5
200	Nominal strength as	i Vsa	(lb)	(9,711)	(13,984)	(19,034)	(24,860)	(38,844)	(60,694)	(76,135)	(87,406)	(99,441)
350/	governed by steel strength	V _{sa}	kN	26.0	37.5	51.0	66.5	103.0	162.0	203.0	233.3	265.5
BSt &	Paduction for science	• sa	(lb)	(5,827)	(8,390)	(11,420)	(14,916)	(23,307)	(36,416)	(45,681)	(52,444)	(59,665)
DIN 488 BSt 550/500	Reduction for seismic shear	αv,seis	-					0.70				
DIN	Strength reduction factor for tension ²	φ	-					0.65				
	Strength reduction factor for shear ²	ϕ	-					0.60				
		ϕ - 0.60										


¹ Values provided for common rod material types are based on specified strengths and calculated in accordance with ACI 318-14 Eq (17.4.1.2) or Eq (17.5.1.2b) or ACI


³¹⁸⁻¹¹ Eq. (D-2) and Eq. (D-29), as applicable. Nuts and washers must be appropriate for the rod.

For use with the load combinations of IBC Section 1605.2, ACI 318-14 5.3, or ACI 318-11 9.2, as applicable, as set forth in ACI 318-14 17.3.3 or ACI 318 D.4.3, as applicable. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of ϕ must be determined in accordance with ACI 318-11 D.4.4. Values correspond to a brittle steel element.

³ A4-70 Stainless (M8- M24); A4-502 Stainless (M27- M30)

Metric Threaded Rod and EU Metric **Reinforcing Bars**

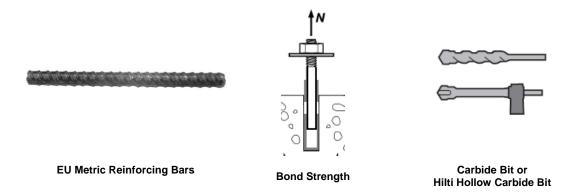
Concrete Breakout Strength

Carbide Bit or Hilti Hollow Carbide Bit Diamond Core Bit + Roughening Tool, or **Diamond Core Bit**

TABLE 15—CONCRETE BREAKOUT DESIGN INFORMATION FOR METRIC THREADED ROD AND EU METRIC REINFORCING BARS ALL DRILLING METHODS¹

DEGICAL INFORMATION	0	1114				Nominal r	od diame	ter (mm)			
DESIGN INFORMATION	Symbol	Units	8	10	12	16	20)	24	27	30
Malaras Espharia	,	mm	60	60	70	80	90) /	100	110	120
Minimum Embedment	h _{ef,min}	(in.)	(2.4)	(2.4)	(2.8)	(3.1)	(3.5	5) (3.9)	(4.3)	(4.7)
Maximum Embadment	6	mm	160	200	240	320	40	0 4	180	540	600
Maximum Embedment	h _{ef,max}	(in.)	(6.3)	(7.9)	(9.4)	(12.6)	(15.	.7) (1	8.9)	(21.4)	(23.7)
Min. anchor spacing ³		mm	40	50	60	80	10	0 ′	120	135	150
Willi. anchor spacing	S _{min}	(in.)	(1.6)	(2.0)	(2.4)	(3.2)	(3.9)	9) (-	4.7)	(5.3)	(5.9)
Min. edge distance ³	Cmin	-	5d; or se	ee Section	4.1.9 of th	is report fo	or design v	vith reduce	ed minim	um edge di	stances
Minimum concrete	.	mm	h _{ef} +	- 30					0		
thickness	h _{min}	(in.)	(h _{ef} +	11/4)				$h_{\rm ef}$ + $2d_{\rm o}^{(4)}$	7		
DECION INFORMATION	Councile of	Haita			Nomir	nal reinfor	cing bar	diameter ((mm)		
DESIGN INFORMATION	Symbol	Units	10	12	14	16	20	25	28	30	32
Minimum Embedment	6	mm	60	70	80	80	90	100	112	120	128
Minimum Embeament	h _{ef,min}	(in.)	(2.4)	(2.8)	(3.1)	(3.1)	(3.5)	(3.9)	(4.4)	(4.7)	(5.0)
Maximum Embedment	h.	mm	200	240	280	320	400	500	560	600	640
Maximum Embedment	h _{ef,max}	(in.)	(7.9)	(9.4)	(11.0)	(12.6)	(15.7)	(19.7)	(22.0)	(23.7)	(25.2)
Min. anchor spacing ³	S _{min}	mm	50	60	70	80	100	125	140	150	160
wiiri. arichor spacing	Smin	(in.)	(2.0)	(2.4)	(2.8)	(3.2)	(3.9)	(4.9)	(5.5)	(5.9)	(6.3)
Min. edge distance ³	Cmin	-	5d; or s	ee Section	4.1.9 of th	is report fo	or design v	vith reduce	ed minim	um edge di	stances
Minimum concrete	1.	mm	h _{ef} + 30				1-	0.1(4)			
thickness	h _{min}	(in.)	$(h_{ef} + 1^{1}/_{4})$)			N _{ef} -	+ 2d _o ⁽⁴⁾			
Critical edge distance – splitting (for uncracked concrete)	Cac	-			Se	ee Section	4.1.10 of	this report	t.		
Effectiveness factor for		SI					7.1				
cracked concrete	K _{C,Cr}	(in-lb)					(17)				
Effectiveness factor for		SI					10				
uncracked concrete	K c,uncr	(in-lb)					(24)				
Strength reduction factor for tension, concrete failure modes, Condition B ²	φ	-					0.65				
Strength reduction factor for shear, concrete failure modes, Condition B ²	φ	-					0.70				

For **SI**: 1 inch \equiv 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa.


For pound-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi

¹Additional setting information is described in Figure 9A and 9B, Manufacturers Printed Installation Instructions (MPII).

²Values provided for post-installed anchors installed under Condition B without supplementary reinforcement as defined in ACI 318-14 17.3.3 or ACI 318-11 D.4.3.

³For installations with 1³/₄-inch edge distance, refer to Section 4.1.9 for spacing and maximum torque requirements.

 $^{^{4}}$ d_{0} = hole diameter.

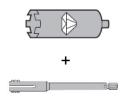
TABLE 16—BOND STRENGTH DESIGN INFORMATION FOR EU METRIC REINFORCING BARS IN HOLES DRILLED WITH A HAMMER DRILL AND CARBIDE BIT (OR HILTI HOLLOW CARBIDE DRILL BIT)¹

DECI	ON INFORMATIO	N.I.	Completed	l lastes			Non	ninal reinfo	orcing bar	diameter (mm)		
DESI	GN INFORMATIO	JN	Symbol	Units	10	12	14	16	20	25	28	30	32
Minin	num Embedment		6	mm	60	70	80	80	90	100	112	120	128
IVIIIIIII	num Embeament		h _{ef,min}	(in.)	(2.4)	(2.8)	(3.1)	(3.1)	(3.5)	(3.9)	(4.4)	(4.7)	(5.0)
Maxis	mum Embadmant		6	mm	200	240	280	320	400	500	560	600	640
IVIAXII	mum Embedment		h _{ef,max}	(in.)	(7.9)	(9.4)	(11.0)	(12.6)	(15.7)	(19.7)	(22.0)	(23.7)	(25.2)
		Characteristic bond		MPa	9.3	9.4	9.5	9.6	9.7	9.8	9.7	9.5	9.3
a)	Temperature	strength in cracked concrete	Tk,cr	(psi)	(1,350)	(1,360)	(1,380)	(1,390)	(1,410)	(1,420)	(1,400)	(1,370)	(1,350)
and	range A ²	Characteristic bond		MPa	12.2	12.1	12.0	11.8	11.6	11.4	11.2	11.1	11.0
Dry concrete and er saturated conc		strength in uncracked concrete	Tk,uncr	(psi)	(1,770)	(1,750)	(1,730)	(1,720)	(1,690)	(1,650)	(1,620)	(1,610)	(1,590)
rete		Characteristic bond		MPa	6.4	6.5	6.5	6.6	6.7	6.8	6.7	6.5	6.4
y concrete saturated	Temperature	strength in cracked concrete	Tk,cr	(psi)	(930)	(940)	(950)	(960)	(970)	(980)	(970)	(950)	(930)
ry c		Characteristic bond		MPa	8.4	8.3	8.3	8.2	8.0	7.8	7.7	7.7	7.6
Dr Water		strength in uncracked concrete	Tk,uncr	(psi)	(1,220)	(1,210)	(1,200)	(1,190)	(1,160)	(1,140)	(1,120)	(1,110)	(1,100)
>	Anchor Categor		-		1	1	1	1	1	1	1	1	1
	Strength Reduc	tion factor	φ _d , φ _{ws}		0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65
		Characteristic bond		MPa	6.9	6.9	7.0	7.2	7.4	7.4	7.4	7.4	7.2
	Temperature	strength in cracked concrete	Tk,cr	(psi)	(1,000)	(1,010)	(1,020)	(1,040)	(1,070)	(1,080)	(1,080)	(1,070)	(1,050)
	range A ²	Characteristic bond		MPa	9.0	8.9	8.9	8.9	8.8	8.7	8.6	8.6	8.6
ole		strength in uncracked concrete	Tk,uncr	(psi)	(1,310)	(1,300)	(1,280)	(1,280)	(1,270)	(1,250)	(1,250)	(1,250)	(1,240)
ed		Characteristic bond		MPa	4.7	4.8	4.8	5.0	5.1	5.1	5.1	5.1	5.0
Water-filled hole	Temperature	strength in cracked concrete	Tk,cr	(psi)	(690)	(700)	(700)	(720)	(740)	(740)	(740)	(740)	(720)
Nate	range B²	Characteristic bond		MPa	6.2	6.2	6.1	6.1	6.1	6.0	5.9	5.9	5.9
		strength in uncracked concrete	Tk,uncr	(psi)	(900)	(890)	(890)	(890)	(880)	(870)	(860)	(860)	(860)
	Anchor Categor	у	-	-	3	3	3	3	3	3	3	3	3
	Strength Reduc	tion factor	ϕ_{wt}	-	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45
		Characteristic bond		MPa	6.0	6.1	6.2	6.3	6.6	6.8	6.8	6.8	6.8
	Temperature	strength in cracked concrete	Tk,cr	(psi)	(880)	(890)	(890)	(920)	(960)	(980)	(980)	(990)	(980)
<u>f</u>	range A ²	Characteristic bond		MPa	7.9	7.8	7.8	7.8	7.9	7.8	7.9	8.0	8.0
ncre		strength in uncracked concrete	$\tau_{k,uncr}$	(psi)	(1,140)	(1,140)	(1,130)	(1,140)	(1,140)	(1,140)	(1,140)	(1,150)	(1,160)
col		Characteristic bond		MPa	4.2	4.2	4.3	4.4	4.6	4.7	4.7	4.7	4.7
Submerged concrete	Temperature	strength in cracked concrete	$ au_{k,cr}$	(psi)	(600)	(610)	(620)	(630)	(660)	(680)	(680)	(680)	(680)
mei	range B ²	Characteristic bond		MPa	5.4	5.4	5.4	5.4	5.4	5.4	5.4	5.5	5.5
Suk		strength in uncracked concrete	$ au_{k,uncr}$	(psi)	(790)	(780)	(780)	(790)	(790)	(780)	(790)	(800)	(800)
	Anchor Categor		-	-	3	3	3	3	3	3	3	3	3
	Strength Reduction factor		φ _{uw}	-	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45
Redu	ection for seismic t		α _{N,seis}	-	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9
			<i>∞14,5015</i>	l	0.0			0.0	L 0.0		1 0.0	1 0.0	

For **SI**: 1 inch \equiv 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa.

For pound-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi

¹Bond strength values correspond to concrete compressive strength f_c = 2,500 psi (17.2 MPa) [minimum of 24 MPa is required under ADIBC Appendix L, Section 5.1.1]. For concrete compressive strength, f_c , between 2,500 psi (17.2 MPa) and 8,000 psi (55.2 MPa), the tabulated characteristic bond strength may be increased by a factor of $(f_c/2,500)^{0.25}$ for uncracked concrete [For SI: $(f_c/17.2)^{0.25}$] and $(f_c/2,500)^{0.15}$ for cracked concrete [For SI: $(f_c/17.2)^{0.15}$]. See Section 4.1.4 of this report for bond strength determination.


²Temperature range A: Maximum short term temperature = 130°F (55°C), Maximum long term temperature = 110°F (43°C).

Temperature range B: Maximum short term temperature = 176°F (80°C), Maximum long term temperature = 110°F (43°C).

Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.

EU Metric Reinforcing Bars

Bond Strength

Diamond Core Bit + Roughening Tool

TABLE 17—BOND STRENGTH DESIGN INFORMATION FOR EU METRIC REINFORCING BARS IN HOLES CORE DRILLED WITH A DIAMOND CORE BIT AND ROUGHENED WITH A HILTI ROUGHENING TOOL¹

DEOL			0	11.24.		Nominal rei	nforcing bar dia	ameter (mm)	
DESIG	GN INFORMATIO	'N	Symbol	Units	14	16	20	25	28
Minim	um Embedment		h _{ef.min}	mm	80	80	90	100	112
IVIIIIIII	um Embeament		l lef,min	(in.)	(3.1)	(3.1)	(3.5)	(3.9)	(4.4)
Mayin	num Embedment		h _{ef,max}	mm	280	320	400	500	560
IVIANIII	num Embeament		I let,max	(in.)	(11.0)	(12.6)	(15.7)	(19.7)	(22.0)
		Characteristic bond strength in	_	MPa	6.7	6.7	6.8	6.9	6.8
ē	Temperature	cracked concrete	Tk,cr	(psi)	(965)	(970)	(985)	(995)	(980)
oncre	range A ²	Characteristic bond strength in		MPa	12.0	11.8	11.6	11.4	11.2
and water saturated concrete		uncracked concrete	Tk,uncr	(psi)	(1,730)	(1,720)	(1,690)	(1,650)	(1,620)
satura		Characteristic bond strength in		MPa	4.6	4.6	4.7	4.8	4.7
vater	Temperature	cracked concrete	$ au_{k,cr}$	(psi)	(665)	(670)	(680)	(685)	(680)
	range B ²	Characteristic bond strength in		MPa	8.3	8.2	8.0	7.8	7.7
Dry		uncracked concrete	Tk,uncr	(psi)	(1,200)	(1,190)	(1,160)	(1,140)	(1,120)
	Anchor Catego	ry	-	-	1	1	1	1	1
	Strength Reduc	ction factor	φ _d , φ _{ws}	-	0.65	0.65	0.65	0.65	0.65
Redu	ction for seismic to	ension	αN,seis	-	0.9	0.9	0.9	0.9	0.9

For **SI**: 1 inch \equiv 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa.

For pound-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi

¹Bond strength values correspond to concrete compressive strength in the range 2,500 psi ≤ f'c ≤ 8,000 psi) [minimum of 24 MPa is required under ADIBC Appendix L. Section 5.1.1].

Appendix L, Section 5.1.1].
²Temperature range A: Maximum short term temperature = 130°F (55°C), Maximum long term temperature = 110°F (43°C).

Temperature range B: Maximum short term temperature = 176°F (80°C), Maximum long term temperature = 110°F (43°C).

Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.

EU Metric Reinforcing Bars

Bond Strength

Diamond Core Bit

TABLE 18—BOND STRENGTH DESIGN INFORMATION FOR EU METRIC REINFORCING BARS IN HOLES CORE DRILLED WITH A DIAMOND CORE BIT1

DECION	UNICORMATION		Completed	l laita			Non	ninal reinfo	orcing bar	diameter (mm)		
DESIG	N INFORMATION		Symbol	Units	10	12	14	16	20	25	28	30	32
Minimuu	m Embedment		h	mm	60	70	80	80	90	100	112	120	128
IVIIIIIIIIIII	The state of the s		h _{ef,min}	(in.)	(2.4)	(2.8)	(3.1)	(3.1)	(3.5)	(3.9)	(4.4)	(4.7)	(5.0)
Maximu	Maximum Embedment		h	mm	200	240	280	320	400	500	560	600	640
IVIAXIIIIU			h _{ef,max}	(in.)	(7.9)	(9.4)	(11.0)	(12.6)	(15.7)	(19.7)	(22.0)	(23.7)	(25.2)
g	Temperature	Characteristic bond strength in		MPa	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0
Saturated	range A ²	uncracked concrete	Tk,uncr	(psi)	(1,150)	(1,150)	(1,150)	(1,150)	(1,150)	(1,150)	(1,150)	(1,150)	(1,150)
er Sa rrete	Temperature	Characteristic bond strength in		MPa	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5
	Temperature range B ² uncracked concrete		Tk,uncr	(psi)	(800)	(800)	(800)	(800)	(800)	(800)	(800)	(800)	(800)
ry and	Anchor Category	/	-		2	2	2	3	3	3	3	3	3
	Strength Reduction factor		φ _d , φ _{ws}		0.55	0.55	0.55	0.45	0.45	0.45	0.45	0.45	0.45

For **SI**: 1 inch \equiv 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa. For pound-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi

¹Bond strength values correspond to concrete compressive strength f_c = 2,500 psi (17.2 MPa)) [minimum of 24 MPa is required under ADIBC Appendix L, Section 5.1.1]. For concrete compressive strength, f_c , between 2,500 psi (17.2 MPa) and 8,000 psi (55.2 MPa), the tabulated characteristic bond strength may be increased by a factor of $(f_c/2,500)^{0.25}$ for uncracked concrete [For SI: $(f_c/17.2)^{0.25}$]. See Section 4.1.4 of this report for bond strength determination.

²Temperature range A: Maximum short term temperature = 130° F (55°C), Maximum long term temperature = 110° F (43°C).

Temperature range B: Maximum short term temperature = 176°F (80°C), Maximum long term temperature = 110°F (43°C).

Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.

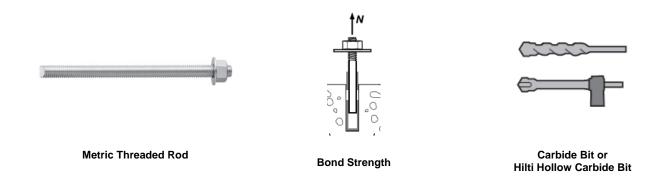


TABLE 19—BOND STRENGTH DESIGN INFORMATION FOR METRIC THREADED RODS IN HOLES DRILLED WITH A HAMMER DRILL AND CARBIDE BIT (OR HILTI HOLLOW CARBIDE DRILL BIT)1

DEC	NON IN	FORMATION	Cumbal	l lmita			N	ominal rod	diameter (mr	n)		
DES	SIGN IN	FORMATION	Symbol	Units	8	10	12	16	20	24	27	30
Mini	imum F	mbedment	h _{ef,min}	mm	60	60	70	80	90	100	110	120
1011111	illiaili E	mbeament	r rei,min	(in.)	(2.4)	(2.4)	(2.8)	(3.1)	(3.5)	(3.9)	(4.3)	(4.7)
Max	imum E	Embedment	$h_{ef,max}$	mm	160 (6.3)	200 (7.9)	240 (9.4)	320 (12.6)	400 (15.7)	480 (18.9)	540 (21.4)	600 (23.7)
	_	Characteristic bond		(in.) MPa	8.8	8.8	8.8	8.7	8.6	8.5	8.5	8.4
crete	Temperature range A ²	strength in cracked concrete	Tk,cr	(psi)	(1,280)	(1,280)	(1,270)	(1,260)	(1,250)	(1,240)	(1,230)	(1,220)
Sor	nge nge	Characteristic bond		MPa	16.7	16.3	16.0	15.2	14.5	13.8	13.2	12.7
Dry and Water Saturated Concrete	Tem	strength in uncracked concrete	$ au_{k,uncr}$	(psi)	(2,420)	(2,370)	(2,320)	(2,210)	(2,100)	(2,000)	(1,920)	(1,840)
atur	e	Characteristic bond		MPa	6.1	6.1	6.0	6.0	5.9	5.9	5.9	5.8
er Sa	Temperature range B²	strength in cracked concrete	Tk,cr	(psi)	(890)	(880)	(880)	(870)	(860)	(860)	(850)	(840)
Nat	npe	Characteristic bond		MPa	11.5	11.3	11.0	10.5	10.0	9.5	9.1	8.7
and \	Ter	strength in uncracked concrete	Tk,uncr	(psi)	(1,670)	(1,630)	(1,600)	(1,520)	(1,450)	(1,380)	(1,320)	(1,270)
)ry		or Category	-	-	1	1	1	1	1	1	1	1
		gth Reduction factor	$\phi_{ m d}$, $\phi_{ m ws}$	-	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65
	Temperature range A ²	Characteristic bond strength in cracked	Tk,cr	MPa (psi)	6.5 (940)	6.5 (940)	6.5 (940)	6.5 (940)	6.5 (940)	6.5 (940)	6.5 (950)	6.5 (950)
	per	concrete Characteristic bond		MPa	12.3	12.1	11.8	11.4	11.0	10.5	10.2	9.8
hole	Tem	strength in uncracked concrete	$ au_{k,uncr}$	(psi)	(1,780)	(1,750)	(1,710)	(1,650)	(1,590)	(1,520)	(1,470)	(1,430)
eq		Characteristic bond		MPa	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5
Water-filled hole	Temperature range B²	strength in cracked concrete	Tk,cr	(psi)	(650)	(650)	(650)	(650)	(650)	(650)	(650)	(650)
Wa	empera range	Characteristic bond		MPa	8.5	8.3	8.2	7.9	7.6	7.2	7.0	6.8
		strength in uncracked concrete	Tk,uncr	(psi)	(1,230)	(1,210)	(1,180)	(1,140)	(1,100)	(1,050)	(1,020)	(990)
		or Category	-	-	3	3	3	3	3	3	3	3
		gth Reduction factor	$\phi_{\scriptscriptstyle \mathcal{W} f}$	-	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45
	z II.e	Characteristic bond strength in cracked	_	MPa	5.7	5.7	5.7	5.7	5.8	5.9	6.0	6.0
	ratu e A	concrete	Tk,cr	(psi)	(820)	(820)	(830)	(830)	(840)	(860)	(870)	(870)
əte	npe	Characteristic bond		MPa	10.7	10.5	10.4	10.1	9.8	9.5	9.3	9.1
oncr	Temperature range A ²	strength in uncracked concrete	Tk,uncr	(psi)	(1,550)	(1,530)	(1,500)	(1,460)	(1,420)	(1,380)	(1,350)	(1,320)
оp	e	Characteristic bond		MPa	3.9	3.9	3.9	4.0	4.0	4.1	4.1	4.2
Submerged concrete	Temperature range B²	strength in cracked concrete	Tk,cr	(psi)	(570)	(570)	(570)	(580)	(580)	(590)	(600)	(600)
ubn	mpe	Characteristic bond		MPa	7.4	7.3	7.2	7.0	6.8	6.6	6.4	6.3
S		strength in uncracked concrete	Tk,uncr	(psi)	(1,070)	(1,060)	(1,040)	(1,010)	(980)	(950)	(930)	(910)
		or Category	-	-	3	3	3	3	3	3	3	3
D- 1		gth Reduction factor	$\phi_{ m uw}$	-	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45
Red	iuction f	or seismic tension	αN,seis	-	1	0.92	0.93	0.95	1	1	1	1

For **SI**: 1 inch \equiv 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa.

For pound-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi

¹Bond strength values correspond to concrete compressive strength f_c = 2,500 psi (17.2 MPa) [minimum of 24 MPa is required under ADIBC Appendix L, Section 5.1.1]. For concrete compressive strength, f'_c , between 2,500 psi (17.2 MPa) and 8,000 psi (55.2 MPa), the tabulated characteristic bond strength may be increased by a factor of $(f'_c/2,500)^{0.25}$ for uncracked concrete [For SI: $(f'_c/17.2)^{0.25}$] and $(f'_c/2,500)^{0.15}$ for cracked concrete [For SI: $(f'_c/17.2)^{0.15}$]. See Section 4.1.4 of this report for bond strength determination.

²Temperature range A: Maximum short term temperature = 130°F (55°C), Maximum long term temperature = 110°F (43°C). Temperature range B: Maximum short term temperature = 176°F (80°C), Maximum long term temperature = 110°F (43°C).

Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.

Diamond Core Bit



TABLE 20—BOND STRENGTH DESIGN INFORMATION FOR METRIC THREADED RODS IN HOLES CORE DRILLED WITH A DIAMOND CORE BIT AND ROUGHENED WITH A HILTI ROUGHENING TOOL¹

DESIGN	INFORMATION		Cumbal	Units		Nomi	nal rod diamete	r (mm)	
DESIGN	INFORMATION		Symbol	Units	16	20	24	27	30
Minimur	m Embedment		h _{ef.min}	mm	80	90	100	110	120
William	II EIIIDCUITICIT		riei,min	(in.)	(3.1)	(3.5)	(3.9)	(4.3)	(4.7)
Maximu	m Embedment		h _{ef,max}	mm	320	400	480	540	600
Maximu	III EIIIDCAITICIT		nei,max	(in.)	(12.6)	(15.7)	(18.9)	(21.4)	(23.7)
ø.		Characteristic bond		MPa	6.1	6.0	6.0	6.0	5.9
concrete	Temperature	strength in cracked concrete	$ au_{k,cr}$	(psi)	(880)	(875)	(870)	(860)	(855)
Ö	range A ²	Characteristic bond		MPa	15.2	14.5	13.8	13.2	12.7
aturated		strength in uncracked concrete	Tk,uncr	(psi)	(2,210)	(2,100)	(2,000)	(1,920)	(1,840)
Į į		Characteristic bond		MPa	4.2	4.2	4.2	4.2	4.1
Ś	Temperature	strength in cracked concrete	Tk,cr	(psi)	(610)	(605)	(600)	(595)	(590)
water	range B ²	Characteristic bond		MPa	10.5	10.0	9.5	9.1	8.7
and		strength in uncracked concrete	Tk,uncr	(psi)	(1,520)	(1,450)	(1,385)	(1,320)	(1,270)
Dry	Anchor Catego	ry	-	-	1	1	1	1	1
	Strength Redu	ction factor	φ _d , φ _{ws}	-	0.65	0.65	0.65	0.65	0.65
Reduction	on for seismic ten	sion	$lpha_{N, m seis}$	-	0.95	1	1	1	1

For **SI**: 1 inch \equiv 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa.

Metric Threaded Rod

For pound-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi

Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.

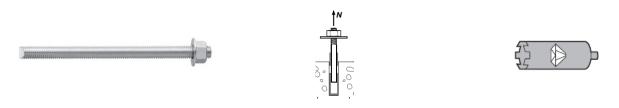


TABLE 21—BOND STRENGTH DESIGN INFORMATION FOR METRIC THREADED RODS IN HOLES CORE DRILLED WITH A DIAMOND CORE BIT1

Bond Strength

DECIC	N INFORMATIO	N .	Cumbal	Units			No	minal rod	diameter (r	nm)		
DESIG	IN INFORMATIO	N	Symbol	Units	8	10	12	16	20	24	27	30
Minim	ım Embedment		h.	mm	60	60	70	80	90	100	110	120
IVIII III IIC	in Linbedinent		h _{ef,min}	(in.)	(2.4)	(2.4)	(2.8)	(3.1)	(3.5)	(3.9)	(4.3)	(4.7)
Marring	um Embedment		6	mm	160	200	240	320	400	480	540	600
Maxim	um Embeament		h _{ef,max}	(in.)	(6.3)	(7.9)	(9.4)	(12.6)	(15.7)	(18.9)	(21.4)	(23.7)
I crete	Temperature	Characteristic bond strength in		MPa	10.7	10.7	10.7	10.7	10.7	10.7	10.7	10.7
an -	range A ² uncracked concrete		T _{k,uncr}	(psi)	(1,550)	(1,550)	(1,550)	(1,550)	(1,550)	(1,550)	(1,550)	(1,550)
y concrete saturated	Temperature	Characteristic bond strength in	Tk,uncr	MPa	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.4
~ W	range B ²	uncracked concrete	r,unci	(psi)	(1,070)	(1,070)	(1,070)	(1,070)	(1,070)	(1,070)	(1,070)	(1,070)
Dr	Anchor Catego	ry	-	-	2	2	2	3	3	3	3	3
\$	Strength Reduction factor		φ _d , φ _{ws}	-	0.55	0.55	0.55	0.45	0.45	0.45	0.45	0.45

For **SI**: 1 inch \equiv 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa.

¹Bond strength values correspond to concrete compressive strength in the range 2,500 psi ≤ f'c ≤ 8,000 psi) [minimum of 24 MPa is required under ADIBC Appendix L, Section 5.1.1].

²Temperature range A: Maximum short term temperature = 130°F (55°C), Maximum long term temperature = 110°F (43°C).

Temperature range B: Maximum short term temperature = 176°F (80°C), Maximum long term temperature = 110°F (43°C).

For pound-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi

For pound-inch units: 1 mm = 0.0393/ inches, 1 N = 0.2248 iot, 1 MPa = 145.0 psi Bond strength values correspond to concrete compressive strength f_c = 2,500 psi (17.2 MPa) [minimum of 24 MPa is required under ADIBC Appendix L, Section 5.1.1]. For concrete compressive strength, f_c , between 2,500 psi (17.2 MPa) and 8,000 psi (55.2 MPa), the tabulated characteristic bond strength may be increased by a factor of $(f_c/2,500)^{0.25}$ for uncracked concrete [For SI: $(f_c/17.2)^{0.25}$]. See Section 4.1.4 of this report for bond strength determination. ²Temperature range A: Maximum short term temperature = 130°F (55°C), Maximum long term temperature = 110°F (43°C). Temperature range B: Maximum short term temperature = 176°F (80°C), Maximum long term temperature = 110°F (43°C).

Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long term concrete temperatures are

roughly constant over significant periods of time.

Canadian Reinforcing Bars

Steel Strength

TABLE 22—STEEL DESIGN INFORMATION FOR CANADIAN METRIC REINFORCING BARS1

DE	SIGN INFORMATION	Symbol	Units		Nomin	al reinforcing b	ar size	
DL.	SIGN IN CRIMATION	Symbol	Offics	10 M	15 M	20 M	25 M	30 M
Nor	ninal bar diameter	d	mm	11.3	16.0	19.5	25.2	29.9
INOI	ninai bar diameter	a	(in.)	(0.445)	(0.630)	(0.768)	(0.992)	(1.177)
Bor	effective cross-sectional area	A _{se}	mm ²	100.3	201.1	298.6	498.8	702.2
Dai	ellective closs-sectional area	Ase	(in.²)	(0.155)	(0.312)	(0.463)	(0.773)	(1.088)
		Nsa	kN	54.0	108.5	161.5	270.0	380.0
	Nominal strength as governed by steel	IVsa	(lb)	(12,175)	(24,408)	(36,255)	(60,548)	(85,239)
G30	strength	14	kN	32.5	65.0	97.0	161.5	227.5
		V _{sa}	(lb)	(7,305)	(14,645)	(21,753)	(36,329)	(51,144)
/80	Reduction for seismic shear Strength reduction factor for tension ²	$lpha_{ m V,seis}$	-			0.70		
		ϕ	-	0.65				
	Strength reduction factor for shear ²		-			0.60		

For **SI**: 1 inch \equiv 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa.

For pound-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi

Values provided for common rod material types based on specified strengths and calculated in accordance with ACI 318-14 Eq (17.4.1.2) or Eq (17.5.1.2b) or ACI 318-11 Eq. (D-2) and Eq. (D-29), as applicable. Other material specifications are admissible.

²For use with the load combinations of ACI 318-14 5.3 or ACI 318-11 9.2, as applicable, as set forth in ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable.

Canadian Reinforcing Bars

Concrete Breakout Strength

Carbide Bit or Hilti Hollow Carbide Bit or Diamond Core Bit

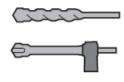
TABLE 23—CONCRETE BREAKOUT DESIGN INFORMATION FOR CANADIAN METRIC REINFORCING BARS IN HOLES DRILLED WITH A HAMMER DRILL AND CARBIDE BIT (OR HILTI HOLLOW CARBIDE DRILL BIT), OR DIAMOND CORE BIT

DECION INFORMATION	C	Haita		Nonm	inal reinforcing b	ar size	
DESIGN INFORMATION	Symbol	Units	10 M	15 M	20 M	25 M	30 M
Effectiveness factor for cracked concrete	1,	SI			7.1		
Effectiveness factor for cracked concrete	K c,cr	(in-lb)			(17)		
Effectiveness factor for uncracked concrete	le.	SI			10		
Effectiveness factor for uncracked concrete	K c,uncr	(in-lb)			(24)		
Minimum Embedment	h	mm	60	80	90	101	120
Willimani Embeament	h _{ef,min}	(in.)	(2.4)	(3.1)	(3.5)	(4.0)	(4.7)
Maximum Embedment	h	mm	226	320	390	504	598
Maximum Embedment	h _{ef,max}	(in.)	(8.9)	(12.6)	(15.4)	(19.8)	(23.5)
Min. bar spacing ³		mm	57	80	98	126	150
Mill. bal spacing	Smin	(in.)	(2.2)	(3.1)	(3.8)	(5.0)	(5.9)
Min. edge distance ³		mm	5d; or see	Section 4.1.9 of th	is report for design	n with reduced min	imum edge
Min. eage distance	Cmin	(in.)			distances		
Minimum concrete thickness	hmin	mm	$h_{ef} + 30$		h _{ef} +	2d-(4)	
Willimitati Concrete trickness	rimin	(in.)	$(h_{ef} + 1^{1}/_{4})$		Tier + .	200	
Critical edge distance – splitting (for uncracked concrete)	Cac	-	- See Section 4.1.10 of this report.				
Strength reduction factor for tension, concrete failure modes, Condition B ²	φ	-			0.65		
Strength reduction factor for shear, concrete failure modes, Condition B ²	φ	- 0.70					

For **SI**: 1 inch \equiv 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa.

For pound-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi

¹Additional setting information is described in Figure 9, Manufacturers Printed Installation Instructions (MPII).


²Values provided for post-installed anchors installed under Condition B without supplementary reinforcement.

³For installations with 1³/₄-inch edge distance, refer to Section 4.1.9 for spacing and maximum torque requirements.

⁴ d_0 = hole diameter.

Canadian Reinforcing Bars

Bond Strength

Carbide Bit or Hilti Hollow Carbide Bit

TABLE 24—BOND STRENGTH DESIGN INFORMATION FOR CANADIAN METRIC REINFORCING BARS IN HOLES DRILLED WITH A HAMMER DRILL AND CARBIDE BIT (OR HILTI HOLLOW CARBIDE DRILL BIT) 1

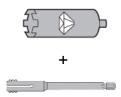
DESIGN	N INFORMATION		Symbol	Units		Nomir	nal reinforcing ba	ar size	
DEGIGI	THE ORDINATION		Cyllibol	Onito	10M	15M	20M	25M	30M
Minimur	m Embedment		h _{ef,min}	mm	60	80	90	101	120
William	III EIIIDeament		r rer, min	(in.)	(2.4)	(3.1)	(3.5)	(4.0)	(4.7)
Maximu	aximum Embedment Characteristic bor strength in cracked concrete		h _{ef,max}	mm	226	320	390	504	598
	T	Characteristic bond		(in.) MPa	(8.9) 9.4	(12.6) 9.6	(15.4) 9.7	(19.8) 9.8	(23.5) 9.5
ated	Temperature	strength in cracked	$ au_{k,cr}$	(psi)	(1,360)	(1,390)	(1,410)	(1,420)	(1,380)
atur	range A ²	Characteristic bond		MPa	12.1	11.8	11.7	11.3	11.1
ater Sa		strength in uncracked concrete	Tk,uncr	(psi)	(1,760)	(1,720)	(1,690)	(1,650)	(1,610)
d Wa	C Characteristic bon strength in cracked concrete concrete concrete Characteristic bon Characteristic bon concrete characteristic bon characteristic bon characteristic concrete characteristic bon characteristic concrete characteristic bon characteristic concrete characteristic bon characteristic character		Tk,cr	MPa	6.5	6.6	6.7	6.8	6.5
Cor	Temperature concrete range B ² Characteristic bor			(psi)	(940)	(960)	(970)	(980)	(950)
rete	range B ² Characteristic bor strength in uncracked concre		$ au_{k.uncr}$	MPa	8.4	8.2	8.0	7.8	7.7
ouc	Strength in uncracked concre		vk,unci	(psi)	(1,210)	(1,190)	(1,170)	(1,140)	(1,110)
Ory or	Anchor Category Strength Reduction factor Characteristic bor strength in cracke concrete		-	-	1	1	1	1	1
	Strength Reduction factor		$\phi_{d,}\phi_{ws}$	-	0.65	0.65	0.65	0.65	0.65
		Characteristic bond strength in cracked	Tk,cr	MPa	6.9	7.2	7.3	7.4	7.3
	3		,	(psi)	(1,010)	(1,040)	(1,060)	(1,080)	(1,060)
0	range A ² Characteristic bor		Tk,uncr	MPa	8.9	8.9	8.8	8.6	8.5
hole		uncracked concrete	,	(psi)	(1,300)	(1,280)	(1,270)	(1,250)	(1,240)
pel	strengtn in uncracked concrete Characteristic bond strength in cracked			MPa	4.8	5.0	5.0	5.1	5.0
Water-filled hole	Temperature	concrete	$ au_{k,cr}$	(psi)	(700)	(720)	(730)	(740)	(730)
Wat	range B ²	Characteristic bond strength in		MPa	6.2	6.1	6.1	6.0	5.9
		uncracked concrete	Tk,uncr	(psi)	(900)	(890)	(880)	(860)	(850)
	Anchor Categor	у	-	-	3	3	3	3	3
	Strength Reduc	tion factor	фwf	-	0.45	0.45	0.45	0.45	0.45
		Characteristic bond		MPa	6.1	6.3	6.5	6.8	6.6
	Temperature	strength in cracked concrete	Tk,cr	(psi)	(880)	(920)	(940)	(980)	(960)
ø	range A ²	Characteristic bond		MPa	7.8	7.8	7.8	7.8	7.8
ncret		strength in uncracked concrete	$ au_{k,uncr}$	(psi)	(1,130)	(1,140)	(1,140)	(1,140)	(1,130)
8	uncracked concrete Characteristic bond			MPa	4.2	4.4	4.5	4.7	4.6
erged	Strength in cracked concrete		Tk,cr	(psi)	(610)	(630)	(650)	(680)	(660)
Subme	range B ² Characteristic bond strength in		Tk,uncr	MPa	5.4	5.4	5.4	5.4	5.4
	uncracked concrete			(psi)	(780)	(790)	(780)	(780)	(780)
	Anchor Categor		-	-	3	3	3	3	3
L	Strength Reduc		$\phi_{ m uw}$	-	0.45	0.45	0.45	0.45	0.45
	on for seismic ten	sion .lbf = 4.448 N. 1 psi = 0	$lpha_{ extsf{N,seis}}$	-	0.9	0.9	0.9	0.9	0.9

For **SI**: 1 inch \equiv 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa.

For pound-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi

¹Bond strength values correspond to concrete compressive strength f'_c = 2,500 psi (17.2 MPa) [minimum of 24 MPa is required under ADIBC Appendix L, Section 5.1.1]. For concrete compressive strength, f_c , between 2,500 psi (17.2 MPa) and 8,000 psi (55.2 MPa), the tabulated characteristic bond strength may be increased by a factor of $(f_c/2,500)^{0.25}$ for uncracked concrete [For SI: $(f_c/17.2)^{0.25}$] and $(f_c/2,500)^{0.15}$ for cracked concrete [For SI: $(f_c/17.2)^{0.15}$]. See Section 4.1.4 of this report for bond strength determination.

2Temperature range A: Maximum short term temperature = 130°F (55°C), Maximum long term temperature = 110°F (43°C).


Temperature range B: Maximum short term temperature = 176°F (80°C), Maximum long term temperature = 110°F (43°C).

Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long term concrete temperatures are

roughly constant over significant periods of time.

Canadian Reinforcing Bars

Bond Strength

Diamond Core Bit + Roughening Tool

TABLE 25A—BOND STRENGTH DESIGN INFORMATION FOR CANADIAN METRIC REINFORCING BARS IN HOLES CORE DRILLED WITH A DIAMOND CORE BIT AND ROUGHENED WITH A HILTI ROUGHENING TOOL¹

DECIO	NUNCORMATION		Completed	Halta	Nominal reinfo	rcing bar size
DESIG	N INFORMATION		Symbol	Units	15M	20M
Minimu	um Embadmant		6	mm	80	90
IVIIIIIIU	inimum Embedment		h _{ef,min}	(in.)	(3.1)	(3.5)
Maxim	aximum Embedment		h	mm	320	390
IVIAXIIII			h _{ef,max}	(in.)	(12.6)	(15.4)
ete		Characteristic bond strength		MPa	6.7	6.8
concrete	Tamparatura ranga A2	in cracked concrete	Tk,cr	(psi)	(970)	(985)
	Temperature range A ²	Characteristic bond strength		MPa	11.8	11.7
atec		in uncracked concrete	Tk,uncr	(psi)	(1,720)	(1,690)
aturated		Characteristic bond strength		MPa	4.6	4.7
S	Tomporatura ranga D2	in cracked concrete	Tk,cr	(psi)	(670)	(680)
Water	Temperature range B ²	Characteristic bond strength		MPa	8.2	8.0
≥		in uncracked concrete	Tk,uncr	(psi)	(1,190)	(1,170)
	Anchor Category		-		1	1
Dry	Strength Reduction factor		φd, φws		0.65	0.65
Reduct	Reduction for seismic tension		$lpha_{N,seis}$	-	0.9	0.9

For **SI**: 1 inch \equiv 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa.

For pound-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi

Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.

Canadian Reinforcing Bars

Bond Strength

Diamond Core Bit

TABLE 25B—BOND STRENGTH DESIGN INFORMATION FOR CANADIAN METRIC REINFORCING BARS IN HOLES CORE DRILLED WITH A DIAMOND CORE BIT1

DESIGN	INFORMATION		Cumbal	Units		Nomina	al reinforcing	bar size	
DESIGN	INFORMATION		Symbol	Units	10M	15M	20M	25M	30M
Minimun	n Embedment		h	mm	60	80	90	101	120
Willillillilli	II Embedment		h _{ef,min}	(in.)	(2.4)	(3.1)	(3.5)	(4.0)	(4.7)
Maximuu	m Embedment		h .	mm	226	320	390	504	598
Maximu	III LIIIbeament		h _{ef,max}	(in.)	(8.9)	(12.6)	(15.4)	(19.8)	(23.5)
ater 3	Temperature range A ²	Characteristic bond strength	_	MPa	8.0	8.0	8.0	8.0	8.0
Wate ated rete	remperature range A	in uncracked concrete	Tk,uncr	(psi)	(1,150)	(1,150)	(1,150)	(1,150)	(1,150)
rate V	Temperature range B ²	Characteristic bond strength	_	MPa	5.5	5.5	5.5	5.5	5.5
and	remperature range B	in uncracked concrete	$\tau_{k,uncr}$	(psi)	(800)	(800)	(800)	(800)	(800)
Ss Ss	Anchor Category		-	-	2	3	3	3	3
Ω	Strength Reduction factor	or	φ _d , φ _{ws}	-	0.55	0.45	0.45	0.45	0.45

For **SI**: 1 inch \equiv 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa.

For pound-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi

Bond strength values correspond to concrete compressive strength $f_c = 2,500$ psi (17.2 MPa) [minimum of 24 MPa is required under ADIBC Appendix L, Section 5.1.1]. For concrete compressive strength, f_c , between 2,500 psi (17.2 MPa) and 8,000 psi (55.2 MPa), the tabulated characteristic bond strength may be increased by a factor of $(f_c/2,500)^{0.25}$ for uncracked concrete [For SI: $(f_c/17.2)^{0.25}$]. See Section 4.1.4 of this report for bond strength determination. ²Temperature range A: Maximum short term temperature = 130°F (55°C), Maximum long term temperature = 110°F (43°C).

Temperature range B: Maximum short term temperature = 176°F (80°C), Maximum long term temperature = 110°F (43°C).

Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.

¹Bond strength values correspond to concrete compressive strength in the range 2,500 psi ≤ f'c ≤ 8,000 psi) [minimum of 24 MPa is required under ADIBC Appendix L, Section 5.1.1].

Temperature range A: Maximum short term temperature = 130°F (55°C), Maximum long term temperature = 110°F (43°C).

Temperature range B: Maximum short term temperature = 176°F (80°C), Maximum long term temperature = 110°F (43°C).

Fractional and Metric HIS-N and HIS-RN **Internal Threaded Insert**

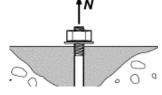
Steel Strength

TABLE 26—STEEL DESIGN INFORMATION FOR FRACTIONAL AND METRIC HIS-N AND HIS-RN THREADED INSERTS1

DESI		Symbol	Units	Nomina	-	o Screw D	iameter	Units	No		lt/Cap Scr mm) Metri	ew Diame	ter		
INFO	RMATION	J20.	00	³ / ₈	1/2	⁵ / ₈	3/4	00	8	10	12	16	20		
HIS I	nsert O.D.	D	in.	0.65	0.81	1.00	1.09	mm	12.5	16.5	20.5	25.4	27.6		
			(mm)	(16.5)	(20.5)	(25.4)	(27.6)	(in.)	(0.49)	(0.65)	(0.81)	(1.00)	(1.09)		
HIS i	nsert length	I	in. (mm)	4.33 (110)	4.92 (125)	6.69 (170)	8.07 (205)	mm (in.)	90 (3.54)	110 (4.33)	125 (4.92)	170 (6.69)	205 (8.07)		
	effective cross- onal area	A _{se}	in. ² (mm ²)	0.0775 (50)	0.1419 (92)	0.2260 (146)	0.3345 (216)	mm ² (in. ²)	36.6 (0.057)	58 (0.090)	84.3 (0.131)	157 (0.243)	245 (0.380)		
	nsert effective		in. ²	0.178	0.243	0.404	0.410	mm ²	51.5	108	169.1	256.1	237.6		
	-sectional area	Ainsert	(mm²)	(115)	(157)	(260)	(265)	(in.²)	(0.080)	(0.167)	(0.262)	(0.397)	(0.368)		
	Naminal ataul	.,	lb	9,690	17,740	28,250	41,815	kN	-	-	-	-	-		
3 B7	Nominal steel strength – ASTM	N _{sa}	(kN)	(43.1)	(78.9)	(125.7)	(186.0)	(lb)	-	-	-	-	-		
ASTM A193	A193 B7 ³ bolt/cap screw	V _{sa}	lb	5,815	10,645	16,950	25,090	kN	-	-	-	-	-		
Σ		- 34	(kN)	(25.9)	(47.3)	(75.4)	(111.6)	(lb)	-	-	-	-	-		
AS-	Nominal steel strength –	N _{sa}	lb	12,645	17,250	28,680	29,145	kN	-	-	-	-	-		
	HIS-N insert	1 45d	(kN)	(56.3)	(76.7)	(127.6)	(129.7)	(lb)	-	-	-	-	-		
	Nominal steel	N _{sa}	lb	8,525	15,610	24,860	36,795	kN	-	-	-	-	-		
93 SS	strength - ASTM	I VSa	(kN)	(37.9)	(69.4)	(110.6)	(163.7)	(lb)	-	-	-	-	-		
ASTM A193 Grade B8M SS	A193 Grade B8M SS bolt/cap screw	V _{sa}	lb	5,115	9,365	14,915	22,075	kN	-	-	-	-	-		
STM de E	33 boli/cap sciew	v sa	(kN)	(22.8)	(41.7)	(66.3)	(98.2)	(lb)	-	-	-	-	-		
Gra Gra	Nominal steel strength –	N _{sa}	lb	18,065	24,645	40,970	41,635	kN	-	-	-	-	-		
	HIS-RN insert	I Vsa	(kN)	(80.4)	(109.6)	(182.2)	(185.2)	(lb)	-	-	-	-	-		
	Nominal steel	N _{sa}	lb	-	-	-	-	kN	29.5	46.5	67.5	125.5	196.0		
_ w	strength - ISO	IVsa	(kN)	-	-	-	-	(lb)	(6,582)	(10,431)	(15,161)	(28,236)	(44,063)		
ISO 898-1 Class 8.8	898-1 Class 8.8 bolt/cap screw	V _{sa}	lb	-	-	-	-	kN	17.5	28.0	40.5	75.5	117.5		
30 g	boll/cap screw	V sa	(kN)	-	-	-	-	(lb)	(3,949)	(6,259)	(9,097)	(16,942)	(26,438)		
≌ ∪	Nominal steel strength –	N _{sa}	lb	-	-	-	-	kN	25.0	53.0	83.0	125.5	116.5		
	HIS-N insert	I Vsa	(kN)	-	-	-	-	(lb)	(5,669)	(11,894)	(18,628)	(28,210)	(26,176)		
σ.	Nominal steel	N _{sa}	lb	-	-	-	-	kN	25.5	40.5	59.0	110.0	171.5		
Slas less	strength – ISO 3506-1 Class A4-	IVsa	(kN)	-	-	-	-	(lb)	(5,760)	(9,127)	(13,266)	(24,706)	(38,555)		
3-1 (itain	70 Stainless	V _{sa}	lb	-	-	-	-	kN	15.5	24.5	35.5	66.0	103.0		
O 3506-1 Class	bolt/cap screw	V sa	(kN)	-	-	-	-	(lb)	(3,456)	(5,476)					
SO 3	Nominal steel strength –	N _{sa}	lb	-	-	-	-	kN	36.0	75.5 118.5 179.5 166					
<u> </u>	HIS-RN insert	IVsa	(kN)	-	-	-	-	(lb)	(8,099)	99) (16,991) (26,612) (40,300) (37,3					
Redu shear	ction for seismic	αv,seis	-		0.	94		-	0.94						
	gth reduction factor nsion ²	φ	-		0.	65		-	- 0.65						
Stren for sh	gth reduction factor near ²	φ	=		0.	60		-			0.60	0.60			

For **SI**: 1 inch \equiv 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897MPa.

For pound-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi


¹Values provided for common rod material types based on specified strengths and calculated in accordance with ACI 318-14 Eq (17.4.1.2) or Eq (17.5.1.2b) or ACI 318-11 Eq. (D-2) and Eq. (D-29), as applicable. Nuts and washers must be appropriate for the rod.

2For use with the load combinations of ACI 318-14 5.3 or ACI 318-11 9.2, as applicable, as set forth in ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable. Values

correspond to a brittle steel element for the HIS insert.

318-11 D.4.3, as applicable, can be used.

Fractional and Metric HIS-N and HIS-RN Internal Threaded Insert

Concrete Breakout Strength

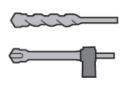
Carbide Bit or Hilti Hollow Carbide Bit

TABLE 27—CONCRETE BREAKOUT DESIGN INFORMATION FOR FRACTIONAL AND METRIC HILTI HIS-N AND HIS-RN INSERTS IN HOLES DRILLED WITH A HAMMER DRILL AND CARBIDE BIT (OR HILTI HOLLOW CARBIDE DRILL BIT)¹

DESIGN INFORMATION	Symbol	Units	Nomina	l Bolt/Cap (in.) Fra	Screw Dactional	iameter	Units	No	minal Bol (r	t/Cap Scr nm) Metri		eter
INFORMATION			3/8	1/2	5/8	3/4		8	10	12	16	20
Effectiveness factor for	k _{c.cr}	in-lb		1	7		SI			7.1		
cracked concrete	K _{C,C}	(SI)		(7	.1)		(in-lb)			(17)		
Effectiveness factor for	K c,uncr	in-lb		2	4		SI			10		
uncracked concrete	Kc,uncr	(SI)		(1	0)		(in-lb)			(24)		
Effective embedment	h ef	in.	43/8	5	63/4	8 ¹ / ₈	mm	90	110	125	170	205
depth	I lef	(mm)	(110)	(125)	(170)	(205)	(in.)					(8.1)
Min anahar anasing3		in.	31/4	4	5	5 ¹ / ₂	mm	63	83	102	127	140
Min. anchor spacing ³	Smin	(mm)	(83)	(102)	(127)	(140)	(in.)	(2.5) (3.25) (4.0) (5.0) (5				(5.5)
Min. edge distance ³		in.	31/4	4	5	5 ¹ / ₂	mm	63	83	102	127	140
wiin. edge distance	C _{min}	(mm)	(83)	(102)	(127)	(140)	(in.)	(2.5)				
Minimum concrete	h	in.	5.9	6.7	9.1	10.6	mm	120	150	170	230	270
thickness	h _{min}	(mm)	(150)	(170)	(230)	(270)	(in.)	(4.7)	(5.9)	(6.7)	(9.1)	(10.6)
Critical edge distance – splitting (for uncracked concrete)	Cac	ı	See S	ection 4.1	.10 of this	report	-	S	See Section	n 4.1.10 o	f this repo	rt
Strength reduction factor for tension, concrete failure modes, Condition B ²	φ	-		0.	65		-	0.65				
Strength reduction factor for shear, concrete failure modes, Condition B ²	φ	-		0.	70		-			0.70		

For **SI**: 1 inch \equiv 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897MPa.

For pound-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi


¹Additional setting information is described in Figure 9A, Manufacturers Printed Installation Instructions (MPII).

²Values provided for post-installed anchors installed under Condition B without supplementary reinforcement as defined in ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable.

³For installations with 1³/₄-inch edge distance, refer to Section 4.1.9 for spacing and maximum torque requirements.

Fractional and Metric HIS-N and HIS-RN **Internal Threaded Insert**

Carbide Bit or **Bond Strength** Hilti Hollow Carbide Bit

TABLE 28—BOND STRENGTH DESIGN INFORMATION FOR FRACTIONAL AND METRIC HILTI HIS-N AND HIS-RN INSERTS IN HOLES DRILLED WITH A HAMMER DRILL AND CARBIDE BIT (OR HILTI HOLLOW CARBIDE DRILL BIT)1

DESIG	N INF	ORMATION	Symbol	Units	Nomin	al bolt/cap (ii	screw di	ameter	Units	Non	ninal bolt/o	cap screw	diameter (mm)
DESIG		ORMATION	Jyllibol	Office	3/8	1/2	5/8	3/4	Onits	8	10	12	16	20
Embed	lment		h _{ef}	in.	43/8	5	63/4	8 ¹ / ₈	mm	90	110	125	170	205
LIIIDCC			rier	(mm)	(110)	(125)	(170)	(205)	(in.)	(3.5)	(4.3)	(4.9)	(6.7)	(8.1)
	nge	Characteristic bond		psi	1,070	1,070	1,070	1,070	MPa	7.4	7.4	7.4	7.4	7.4
	Temperature range A ²	strength in cracked concrete	Tk,cr	(MPa)	(7.4)	(7.4)	(7.4)	(7.4)	(psi)	(1,070)	(1,070)	(1,070)	(1,070)	(1,070)
rete	erat	Characteristic bond		psi	1,790	1,790	1,790	1,790	MPa	12.3	12.3	12.3	12.3	12.3
Dry concrete and Water saturated concrete	Temp	strength in uncracked concrete	$ au_{k,uncr}$	(MPa)	(12.3)	(12.3)	(12.3)	(12.3)	(psi)	(1,790)	(1,790)	(1,790)	(1,790)	(1,790)
רמר rate	e)	Characteristic bond		psi	740	740	740	740	MPa	5.1	5.1	5.1	5.1	5.1
/ cor satu	Temperature range B ²	strength in cracked concrete	Tk,cr	(MPa)	(5.1)	(5.1)	(5.1)	(5.1)	(psi)	(740)	(740)	(740)	(740)	(740)
Ter:	npe	Characteristic bond		psi	1,240	1,240	1,240	1,240	MPa	8.5	8.5	8.5	8.5	8.5
×	Ter	strength in uncracked concrete	$ au_{k,uncr}$	(MPa)	(8.5)	(8.5)	(8.5)	(8.5)	(psi)	(1,240)	(1,240)	(1,240)	(1,240)	(1,240)
	Anch	nor Category	-	-	1	1	1	1	-	1	1	1	1	1
	Strer	ngth Reduction factor	$\phi_{d,}\phi_{ws}$	-	0.65	0.65	0.65	0.65	-	0.65	0.65	0.65	0.65	0.65
	an an	Characteristic bond		psi	800	810	820	820	MPa	5.5	5.5	5.6	5.7	5.7
	Temperature	strength in cracked concrete	Tk,cr	(MPa)	(5.5)	(5.6)	(5.7)	(5.7)	(psi)	(790)	(800)	(810)	(820)	(820)
	pera	Characteristic bond		psi	1,340	1,350	1,370	1,380	MPa	9.1	9.2	9.3	9.5	9.5
Water-filled hole	Terr	strength in uncracked concrete	$ au_{k,uncr}$	(MPa)	(9.2)	(9.3)	(9.5)	(9.5)	(psi)	(1,330)	(1,340)	(1,350)	(1,370)	(1,380)
lled	ø	Characteristic bond		psi	550	560	570	570	MPa	3.8	3.8	3.8	3.9	3.9
iter-fi	Femperature	strength in cracked concrete	Tk,cr	(MPa)	(3.8)	(3.8)	(3.9)	(3.9)	(psi)	(550)	(550)	(560)	(570)	(570)
×	mpe	Characteristic bond		psi	920	930	950	950	MPa	6.3	6.4	6.4	6.5	6.6
	Tel	strength in uncracked concrete	Tk,uncr	(MPa)	(6.4)	(6.4)	(6.5)	(6.6)	(psi)	(920)	(920)	(930)	(950)	(950)
	Anch	nor Category	-	-	3	3	3	3	-	3	3	3	3	3
	Strer	ngth Reduction factor	$\phi_{ m wf}$	-	0.45	0.45	0.45	0.45	-	0.45	0.45	0.45	0.45	0.45
	ē	Characteristic bond		psi	710	720	750	750	MPa	4.8	4.9	5.0	5.1	5.2
	Temperature	strength in cracked concrete	Tk,cr	(MPa)	(4.9)	(5.0)	(5.1)	(5.2)	(psi)	(700)	(710)	(720)	(750)	(750)
ē	mpe	Characteristic bond		psi	1,190	1,210	1,250	1,260	MPa	8.0	8.2	8.4	8.6	8.7
ncre	Tel	strength in uncracked concrete	T _{k,uncr}	(MPa)	(8.2)	(8.4)	(8.6)	(8.7)	(psi)	(1,160)	(1,190)	(1,210)	(1,250)	(1,260)
8 9	.e	Characteristic bond		psi	490	500	510	520	MPa	3.3	3.4	3.4	3.5	3.6
Submerged concrete	emperature range B²	strength in cracked concrete	Tk,cr	(MPa)	(3.4)	(3.4)	(3.5)	(3.6)	(psi)	(480)	(490)	(500)	(510)	(520)
mqr	mpe	Characteristic bond		psi	820	840	860	870	MPa	5.5	5.6	5.8	5.9	6.0
Ñ	Te	strength in uncracked concrete	Tk,uncr	(MPa)	(5.6)	(5.8)	(5.9)	(6.0)	(psi)	(800)	(820)	(840)	(860)	(870)
	Anch	nor Category	-	-	3	3	3	3	-	3	3	3	3	3
	Strer	ngth Reduction factor	ϕ_{uw}	-	0.45	0.45	0.45	0.45	-	0.45	0.45	0.45	0.45	0.45
Reduc	tion for	seismic tension	αN,seis	-	1	1	1	1	-	1	1	1	1	1

For **SI**: 1 inch \equiv 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa.

For pound-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi


¹Bond strength values correspond to concrete compressive strength f_c = 2,500 psi (17.2 MPa) [minimum of 24 MPa is required under ADIBC Appendix L, Section 5.1.1]. For concrete compressive strength, f_c , between 2,500 psi (17.2 MPa) and 8,000 psi (55.2 MPa), the tabulated characteristic bond strength may be increased by a factor of $(f_c / 2,500)^{0.25}$ for uncracked concrete [For SI: $(f_c / 17.2)^{0.25}$] and $(f_c / 2,500)^{0.15}$ for cracked concrete [For SI: $(f_c / 17.2)^{0.15}$]. See Section 4.1.4 of this report for bond strength determination.

²Temperature range A: Maximum short term temperature = 130°F (55°C), Maximum long term temperature = 110°F (43°C). Temperature range B: Maximum short term temperature = 176°F (80°C), Maximum long term temperature = 110°F (43°C).

Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.

Fractional and Metric HIS-N and HIS-RN **Internal Threaded Insert**

Bond Strength

Diamond Core Bit + **Roughening Tool**

TABLE 29—BOND STRENGTH DESIGN INFORMATION FOR FRACTIONAL AND METRIC HILTI HIS-N AND HIS-RN INSERTS IN HOLES CORE DRILLED WITH A DIAMOND CORE BIT AND ROUGHENED WITH A HILTI ROUGHENING TOOL¹

DES	IGN INFORMATI	ION	Symbol	Units		al bolt/cap		Units		al bolt/cap	
					¹ / ₂	⁵ / ₈	3/4		12	16	20
Emb	edment		h _{ef}	in.	5	6¾	8 ¹ / ₈	mm	125	170	205
LIIID	Characteristic bond		Het	(mm)	(125)	(170)	(205)	(in.)	(4.9)	(6.7)	(8.1)
Ф	Characteristic bond strength in cracked			psi	750	750	750	MPa	5.2	5.2	5.2
Saturated	Temperature concrete range A ² Characteristic bond strength in cracked concrete Characteristic bond		$ au_{k,cr}$	(MPa)	(5.2)	(5.2)	(5.2)	(psi)	(750)	(750)	(750)
	range A ²	Characteristic bond strength in		psi	1,790	1,790	1,790	MPa	12.3	12.3	12.3
and Water		uncracked concrete	Tk,uncr	(MPa)	(12.3)	(12.3)	(12.3)	(psi)	(1,790)	(1,790)	(1,790)
Z S		Characteristic bond		psi	515	515	515	MPa	3.6	3.6	3.6
	Temperature	strength in cracked concrete	Tk,cr	(MPa)	(3.6)	(3.6)	(3.6)	(psi)	(515)	(515)	(515)
crete	range B ²	Characteristic bond	_	psi	1,240	1,240	1,240	MPa	8.5	8.5	8.5
concrete		strength in uncracked concrete	$\tau_{k,uncr}$	(MPa)	(8.5)	(8.5)	(8.5)	(psi)	(1,240)	(1,240)	(1,240)
Dry	Anchor Catego	ory	-	-	1	1	1	-	1	1	1
	Strength Redu	ction factor	ϕ_{d} , ϕ_{ws}	-	0.65	0.65	0.65	-	0.65	0.65	0.65
Redu	Reduction for seismic tension		αN,seis	-	1	1	1	-	1	1	1

For **SI**: 1 inch \equiv 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa.

For pound-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi

¹Bond strength values correspond to concrete compressive strength in the range 2,500 psi ≤ f'c ≤ 8,000 psi [minimum of 24 MPa is required under ADIBC Appendix L, Section 5.1.1].

²Temperature range A: Maximum short term temperature = 130°F (55°C), Maximum long term temperature = 110°F (43°C).

Temperature range B: Maximum short term temperature = 176°F (80°C), Maximum long term temperature = 110°F (43°C).

Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.

Fractional and Metric HIS-N and HIS-RN **Internal Threaded Insert**

Bond Strength

Diamond Core Bit

TABLE 30—BOND STRENGTH DESIGN INFORMATION FOR FRACTIONAL AND METRIC HILTI HIS-N AND HIS-RN INSERTS IN HOLES CORE DRILLED WITH A DIAMOND CORE BIT1

DESIG	ON INFORMATION	ON	Symbol	Units	No		lt/cap sci ter (in.)	ew	Units	Nomi	nal bolt/cap screw diameter (mm)			
					³ / ₈	1/2	⁵ / ₈	3/4		8	10	12	16	20
Embe	dment		h _{ef}	in. (mm)	4 ³ / ₈ (110)	5 (125)	6 ³ / ₄ (170)	8 ¹ / ₈ (205)	mm (in.)	90 (3.5)	110 (4.3)	125 (4.9)	170 (6.7)	205 (8.1)
e and Water Concrete	Temperature range A ²	Characteristi c bond strength in uncracked concrete	Tk,uncr	psi (MPa)	1,200 (8.3)	1,200 (8.3)	1,200 (8.3)	1,200 (8.3)	MPa (psi)	8.3 (1,200)	8.3 (1,200)	8.3 (1,200)	8.3 (1,200)	8.3 (1,200)
concrete	Temperature range B ²	Characteristi c bond strength in uncracked concrete	$ au_{k,uncr}$	psi (MPa)	830 (5.7)	830 (5.7)	830 (5.7)	830 (5.7)	MPa (psi)	5.7 (830)	5.7 (830)	5.7 (830)	5.7 (830)	5.7 (830)
Dry	Anchor Catego	ory	-	-	3	3	3	3	-	2	3	3	3	3
	Strength Reduc	ction factor	φ _d , φ _{ws}	-	0.45	0.45	0.45	0.45	•	0.55	0.45	0.45	0.45	0.45

For **SI**: 1 inch \equiv 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa.

For pound-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi ¹Bond strength values correspond to concrete compressive strength $f_c = 2,500$ psi (17.2 MPa) [minimum of 24 MPa is required under ADIBC Appendix L, Section 5.1.1]. For concrete compressive strength, f_c , between 2,500 psi (17.2)^{0.25}]. See Section 4.1.4 of this report for bond strength determination.

2Temperature range A: Maximum short term temperature = 130° F (55°C), Maximum long term temperature = 110° F (43°C).

Temperature range B: Maximum short term temperature = 176°F (80°C), Maximum long term temperature = 110°F (43°C).

Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.

TABLE 31—DEVELOPMENT LENGTH FOR U.S. CUSTOMARY UNIT REINFORCING BARS IN HOLES DRILLED WITH A HAMMER DRILL AND CARBIDE BIT OR HILTI HOLLOW CARBIDE BIT OR CORE DRILLED WITH A DIAMOND CORE BIT OR A DIAMOND CORE BIT AND ROUGHENED WITH A HILTI ROUGHENING TOOL 1,2,4,5,6

							Bar	Size			
DESIGN INFORMATION	Symbol	Criteria Section of Reference Standard	Units	#3	#4	#5	#6	#7	#8	#9	#10
Nominal reinforcing bar	d _b	ASTM A615/A706	in.	0.375	0.500	0.625	0.750	0.875	1.000	1.125	1.250
diameter	u_b	A3 1101 A013/A700	(mm)	(9.5)	(12.7)	(15.9)	(19.1)	(22.2)	(25.4)	(28.6)	(31.8)
Namicallana	4	A CTM A CAE (A 700	in ²	0.11	0.20	0.31	0.44	0.60	0.79	1.00	1.27
Nominal bar area	Ab	ASTM A615/A706	(mm²)	(71.3)	(126.7)	(197.9)	(285.0)	(387.9)	(506.7)	(644.7)	(817.3)
Development length for $f_y = 60$ ksi and $f'_c = 2,500$ psi (normal weight concrete) ³	I _d	ACI 318 12.2.3	in.	12.0	14.4	18.0	21.6	31.5	36.0	40.5	45.0
worght controlley			(mm)	(304.8)	(365.8)	(457.2)	(548.6)	(800.1)	(914.4)	(1028.7)	(1143.0)
Development length for $f_y = 60$ ksi and $f'_c = 4,000$ psi (normal	I _d	ACI 318 12.2.3	in.	12.0	12.0	14.2	17.1	24.9	28.5	32.0	35.6
weight concrete) ³			(mm)	(304.8)	(304.8)	(361.4)	(433.7)	(632.5)	(722.9)	(812.8)	(904.2)

For **SI**: 1 inch \equiv 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa.

For pound-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi

TABLE 32—DEVELOPMENT LENGTH FOR EU METRIC REINFORCING BARS IN HOLES DRILLED WITH A HAMMER DRILL AND CARBIDE BIT OR HILTI HOLLOW CARBIDE BIT OR CORE DRILLED WITH A DIAMOND CORE BIT OR A DIAMOND CORE BIT AND ROUGHENED WITH A HILTI ROUGHENING TOOL^{1,2,4,5,6}

		Criteria Section of				Bar	Size		
DESIGN INFORMATION	Symbol	Reference Standard	Units	10	12	16	20	25	32
Nominal reinforcing bar	d _b	BS4449: 2005	mm	10	12	16	20	25	32
diameter	u_b	B34449. 2003	(in.)	(0.394)	(0.472)	(0.630)	(0.787)	(0.984)	(1.260)
Nominal bar area	A_b	BS 4449: 2005	mm²	78.5	113.1	201.1	314.2	490.9	804.2
Nominal bar area	A_b	B3 4449. 2003	(in²)	(0.12)	(0.18)	(0.31)	(0.49)	(0.76)	(1.25)
Development length for $f_y = 72.5$ ksi and $f'_c =$	I _d	ACI 318 12.2.3	mm	348	417	556	871	1087	1392
2,500 psi (normal weight concrete) ³	ia	A01310 12.2.3	(in.)	(13.7)	(16.4)	(21.9)	(34.3)	(42.8)	(54.8)
Development length for $f_y = 72.5$ ksi and $f'_c =$	I _d	ACI 318 12.2.3	mm	305	330	439	688	859	1100
4,000 psi (normal weight concrete) ³	Id	AQ1 316 12.2.3	(in.)	(12.0)	(13.0)	(17.3)	(27.1)	(33.8)	(43.3)

For **SI**: 1 inch \equiv 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa.

For pound-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi

¹Development lengths valid for static, wind, and earthquake loads (SDC A and B).

²Development lengths in SDC C through F must comply with ACI 318-14 Chapter 18 or ACI 318-11 Chapter 21, as applicable, and section 4.2.4 of this report. ³For sand-lightweight concrete, increase development length by 33%, unless the provisions of ACI 318-14 25.4.2.4 or ACI 318-11 12.2.4 (d), as applicable, are

met to permit $\lambda > 0.75$. $\frac{4}{a_b} \left(\frac{c_b + K_{tr}}{a_b}\right) = 2.5$, $\psi_t = 1.0$, $\psi_s = 0.8$ for $d_b \le \#6, 1.0$ for $d_b > \#6$

 u_b 5Minimum f_c of 24 MPa is required under ADIBC Appendix L, Section 5.1.1.

⁶Calculations may be performed for other steel grades per ACI 318-11 Chapter 12 or ACI 318-14 Chapter 25.

¹Development lengths valid for static, wind, and earthquake loads (SDC A and B).

²Development lengths in SDC C through F must comply with ACI 318-14 Chapter 18 or ACI 318-11 Chapter 21 and section 4.2.4 of this report.

³For sand-lightweight concrete, increase development length by 33%, unless the provisions of ACI 318-14 25.4.2.4 or ACI 318-11 12.2.4 (d), as applicable, are met to permit λ > 0.75.

 $^{^4\}left(\frac{c_b + K_{tr}}{d_b}\right) = 2.5, \ \psi_t = 1.0, \ \psi_e = 1.0, \ \psi_s = 0.8 \ \text{for } d_b < 20 \ \text{mm}, 1.0 \ \text{for } d_b \ge 20 \ \text{mm}$

 u_b 5Minimum f_c of 24 MPa is required under ADIBC Appendix L, Section 5.1.1.

⁶Calculations may be performed for other steel grades per ACI 318-11 Chapter 12 or ACI 318-14 Chapter 25.

TABLE 33—DEVELOPMENT LENGTH FOR CANADIAN REINFORCING BARS IN HOLES DRILLED WITH A HAMMER DRILL AND CARBIDE BIT OR HILTI HOLLOW CARBIDE BIT OR CORE DRILLED WITH A DIAMOND CORE BIT OR A DIAMOND CORE BIT AND ROUGHENED WITH A HILTI ROUGHENING TOOL 1,2,4,5,6

		Otto to Ocotto cot				Bar Size		
DESIGN INFORMATION	Symbol	Criteria Section of Reference Standard	Units	10M	15M	20M	25M	30M
Nominal reinforcing bar	dь	CAN/CSA-G30.18 Gr.400	mm	11.3	16.0	19.5	25.2	29.9
diameter	u_b	CAN/CSA-G30.16 G1.400	(in.)	(0.445)	(0.630)	(0.768)	(0.992)	(1.177)
Nominal bar area	Ab	CAN/CSA-G30.18 Gr.400	mm ²	100.3	201.1	298.6	498.8	702.2
Nominal bar area	A_b	CAN/CSA-G30.18 G1.400	(in²)	(0.16)	(0.31)	(0.46)	(0.77)	(1.09)
Development length for $f_y = 58$ ksi and $f'_c = 2,500$ psi	I d	ACI 318 12.2.3	mm	315	445	678	876	1,041
(normal weight concrete) ³	Id	ACI 010 12.2.3	(in.)	(12.4)	(17.5)	(26.7)	(34.5)	(41.0)
Development length for $f_V = 58$ ksi and $f_C' = 4,000$ psi	I d	ACI 318 12.2.3	mm	305	353	536	693	823
(normal weight concrete) ³	ia	7.01.010 12.2.0	(in.)	(12.0)	(13.9)	(21.1)	(27.3)	(32.4)

For **SI**: 1 inch \equiv 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa.

For pound-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi

⁶Calculations may be performed for other steel grades per ACI 318-11 Chapter 12 or ACI 318-14 Chapter 25.

HILTI HIT-RE 500 V3 FOIL PACK AND MIXING NOZZLE

ANCHORING ELEMENTS

HILTI TE-YRT ROUGHENING TOOL

¹Development lengths valid for static, wind, and earthquake loads (SDC A and B).

²Development lengths in SDC C through F must comply with ACl 318-14 Chapter 18 or ACl 318-11 Chapter 21 and section 4.2.4 of this report.

 $^{^3}$ For sand-lightweight concrete, increase development length by 33%, unless the provisions of ACI 318-14 25.4.2.4 or ACI 318-11 12.2.4 (d), as applicable, are met to permit $\lambda > 0.75$.

 $^{4 \}left(\frac{c_b + K_{tr}}{d_b}\right) = 2.5, \ \psi_t = 1.0, \ \psi_e = 1.0, \ \psi_s = 0.8 \ \text{for} \ d_b < 20\text{M}, 1.0 \ \text{for} \ d_b \ge 20\text{M}$

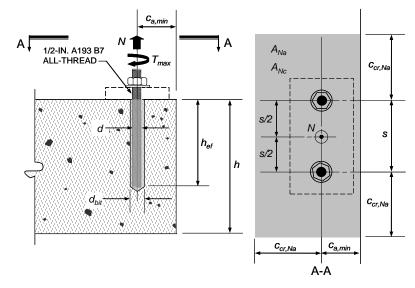
⁵Minimum f'_c of 24 MPa is required under ADIBC Appendix L, Section 5.1.1.

Specifications / Assumptions:

ASTM A193 Grade B7 threaded rod Normal weight concrete, f'c = 4,000 psi Seismic Design Category (SDC) B

No supplementary reinforcing in accordance with ACI 318-14 2.3 will be provided.

Assume maximum short term (diurnal) base material temperature < 130° F.


Assume maximum long term base material temperature ≤ 110° F.

Assume installation in dry concrete and hammerdrilled holes.

Assume concrete will remain uncracked for service life of anchorage.

Dimensional Parameters:

= 9.0 in.*h*_{ef} = 4.0 in.s C_{a,min} = 2.5 in.= 12.0 in.h = 1/2 in.d

Calculation for the 2018 and 2015 IBC in accordance with ACI 318-14 Chapter 17 and this report	ACI 318-14 Code Ref.	Report Ref.
Step 1. Check minimum edge distance, anchor spacing and member thickness: $c_{min} = 2.5 \text{ in.} \leq c_{a,min} = 2.5 \text{ in.} \therefore \text{ OK}$ $s_{min} = 2.5 \text{ in.} \leq s = 4.0 \text{ in.} \therefore \text{ OK}$ $h_{min} = h_{ef} + 1.25 \text{ in.} = 9.0 + 1.25 = 10.25 \text{ in.} \leq h = 12.0 \therefore \text{ OK}$ $h_{ef,min} \leq h_{ef} \leq h_{ef,max} = 2.75 \text{ in.} \leq 9 \text{ in.} \leq 10 \text{ in.} \therefore \text{ OK}$	-	Table 7
Step 2. Check steel strength in tension:		
Single Anchor: $N_{sa} = A_{se} \cdot f_{uta} = 0.1419 \text{ in}^2 \cdot 125,000 \text{ ps} = 17,738 \text{ lb.}$ Anchor Group: $\phi N_{sa} = \phi \cdot n \cdot A_{se} \cdot f_{uta} = 0.75 \cdot 2 \cdot 17,738 \text{ lb.} = 26,606 \text{ lb.}$ Or using Table 11: $\phi N_{sa} = 0.75 \cdot 2 \cdot 17,735 \text{ lb.} = 26,603 \text{ lb.}$	17.4.1.2 Eq. (17.4.1.2)	Table 2 Table 6A
Step 3 . Check concrete breakout strength in tension: $N_{cbg} = \frac{A_{Nc}}{A_{NcO}} \cdot \psi_{ec,N} \cdot \psi_{ed,N} \cdot \psi_{c,N} \cdot \psi_{cp,N} \cdot N_b$	17.4.2.1 Eq. (17.4.2.1b)	-
$A_{Nc} = (3 \cdot h_{ef} + s)(1.5 \cdot h_{ef} + c_{a,min}) = (3 \cdot 9 + 4)(13.5 + 2.5) = 496 in^2$	-	-
$A_{Nc0} = 9 \bullet h_{ef}^2 = 729 \text{ in}^2$	17.4.2.1 and Eq. (17.4.2.1c)	-
$\psi_{\text{ec},N} = 1.0$ no eccentricity of tension load with respect to tension-loaded anchors	17.4.2.4	-
For $c_{a,min} < 1.5h_{ef}$ $\psi_{ed,N} = 0.7 + 0.3 \cdot \frac{c_{a,min}}{1.5h_{ef}} = 0.7 + 0.3 \cdot \frac{2.5}{1.5 \cdot 9} = 0.76$	17.4.2.5 and Eq. (17.4.2.5b)	-
$\psi_{c,N} = 1.0$ uncracked concrete assumed ($k_{c,uncr} = 24$)	17.4.2.6	Table 7
Determine c_{ac} : From Table 11: $\tau_{uncr} = 2,300 \text{ psi}$ $\tau_{uncr} = \frac{k_{c,uncr}}{\pi \cdot d} \sqrt{h_{ef} \cdot f'_{c}} = \frac{24}{\pi \cdot 0.5} \sqrt{9.0 \cdot 4,000} = 2,899 \text{ psi} > 2,300 \text{ psi} \therefore \text{ use 2,300}$ psi $c_{ac} = h_{ef} * \left(\frac{\tau_{uncr}}{1,160}\right)^{0.4} \left[3.1 - 0.7 \frac{h}{h_{ef}}\right] = 9 * \left(\frac{2,300 \left(\frac{4,000}{2,500}\right)^{25}}{1,160}\right)^{0.4} \left[3.1 - 0.7 \frac{12}{9}\right] = 26.9 \text{ in.}$	-	Section 4.1.10 Table 11
For $c_{a,min} < c_{ac}$ $\Psi_{cp,N} = \frac{\max c_{a,min}; 1.5 \ h_{ef} }{c_{ac}} = \frac{\max 2.5; 1.5*9 }{26.9} = \textbf{0.50}$	17.4.2.7 and Eq. (17.4.2.7b)	-
$N_b = k_{c,uncr} \cdot \lambda \cdot \sqrt{f'_c} \cdot h_{ef}^{1.5} = 24 \cdot 1.0 \cdot \sqrt{4,000} \cdot 9^{1.5} = 40,983 lb.$	17.4.2.2 and Eq. (17.4.2.2a)	Table 7
$N_{cbg} = \frac{496}{729} * 1.0 * 0.76 * 0.50 * 40,983 = 10,596 lb.$	-	-
$\phi N_{cbg} = 0.65 \bullet 10,596 = $ 6,887 lb.	17.3.3(c)	Table 7

h			I	I	
Step 4. Check bond strength in te $N_{ag} = \frac{A_{Na}}{A_{NaO}} \cdot \psi_{ec,Na} \cdot \psi_{ed,Na} \cdot \psi_{ed,Na}$	17.4.5.1 Eq. (17.4.5.1b)	-			
$A_{Na} = (2c_{Na} + s)(c_{Na} + c_{a,min})$ $c_{Na} = 10d_a \sqrt{\frac{\tau_{uncr}}{1,100}} = 10 * 0.5 \sqrt{\frac{\frac{2,300*(\frac{4,000}{2,500})^{25}}{1,100}}{1,100}} = 7.67 \text{ in.}$ $A_{Na} = (2 • 7.67 + 4)(7.67 + 2.5) = 196.7 \text{ in}^2$			17.4.5.1 Eq. (17.4.5.1d)	Table 11	
$A_{Na0} = (2c_{Na})^2 = (2 \cdot 7.67)^2 = 2$	$A_{Na0} = (2c_{Na})^2 = (2 \cdot 7.67)^2 = 235.3 \text{ in}^2$			-	
$\psi_{\text{ec,Na}} = \textbf{1.0}$ no eccentricity –	$\psi_{\text{ec,Na}} = 1.0$ no eccentricity – loading is concentric			-	
$\Psi_{ed,Na} = \left(0.7 + 0.3 \frac{c_{a,min}}{c_{na}}\right) = \left(0.7 + 0.3 \frac{2.5}{7.67}\right) = 0.80$			17.4.5.4	-	
$\Psi_{cp,Na} = \frac{max c_{a,min};c_{na} }{c_{ac}} = \frac{max 2.5;7.67 }{26.9} = 0.29$			17.4.5.5	-	
$N_{ba} = \lambda \bullet \tau_{uncr} \bullet \pi \bullet d \bullet h_{ef} = 1.0 \bullet 2,300 \bullet \left(\frac{4,000}{2,500}\right)^{0.25} \bullet \pi \bullet 0.5 \bullet 9.0 = $ 36,570 lb.			17.4.5.2 and Eq. (17.4.5.2)	Table 11	
$N_{ag} = \frac{196.7}{235.3} * 1.0 * .80 * .29 * 36,570 = 7,092lb.$			-	-	
$\phi N_{ag} = 0.65 \bullet 6,256 = 4,610 \text{ lb.}$			17.3.3(c)	Table 11	
Step 5. Determine controlling str	ength:				
Steel Strength $\phi N_{sa} = 26,603 \text{ lb.}$					
Concrete Breakout Strength	$\phi N_{cbg} =$	6,887 lb.	17.3.1		
Bond Strength	$\phi N_{ag} =$	4,610 lb. CONTROLS			

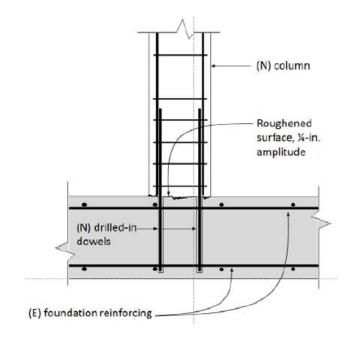
FIGURE 7—SAMPLE CALCULATION (Continued)

Specifications / Assumptions:

Development length for column starter bars

Existing construction (E):

Foundation grade beam 24 wide x 36-in deep., 4 ksi normal weight concrete, ASTM A615 Gr. 60 reinforcement


New construction (N):

18 x 18-in. column as shown, centered on 24-in wide grade beam, 4 ksi normal weight concrete, ASTM A615 Gr. 60 reinforcement, 4 - #7 column bars

The column must resist moment and shear arising from wind loading.

Dimensional Parameters:

$$\begin{aligned} \mathbf{d_b} &= 0.875 \text{ in.} \\ \left(\frac{C_b + K_{tr}}{d_b}\right) &= 2.5 \\ \psi_{\ell} &= 1.0 \\ \psi_{\ell} &= 1.0 \\ \psi_{s} &= 1.0 \end{aligned}$$

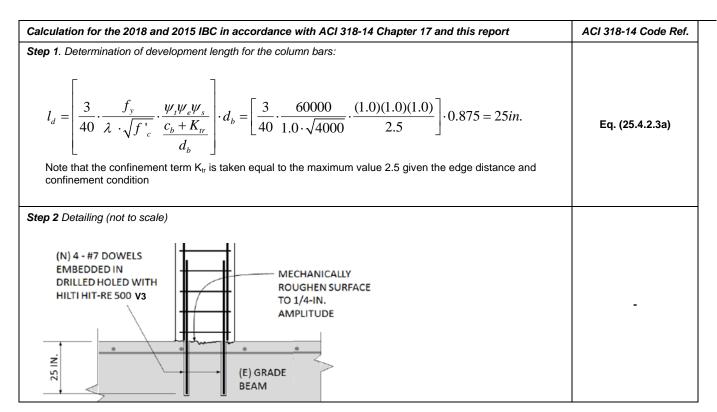
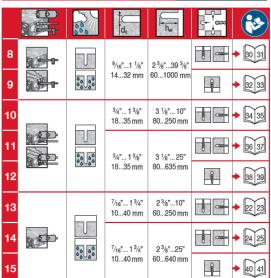
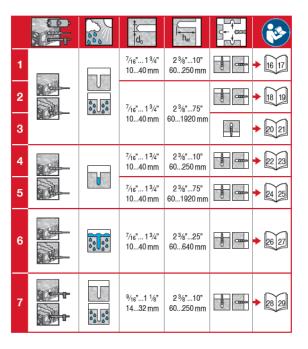
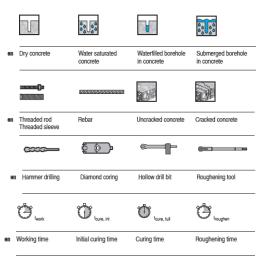
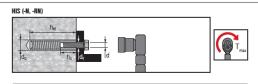



FIGURE 8—SAMPLE CALCULATION (POST-INSTALLED REINFORCING BARS)

HIT-V (-R, -F, -HCR) / HAS-E (-B7) / HAS-R

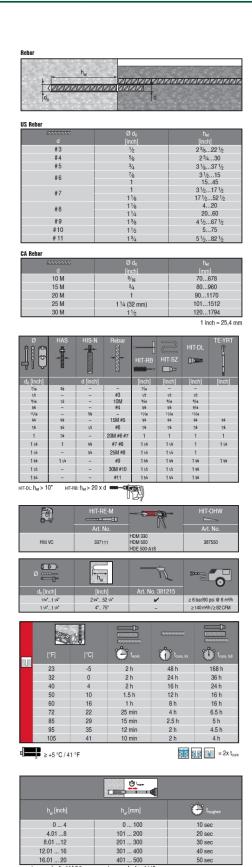

HAS / HIT-V

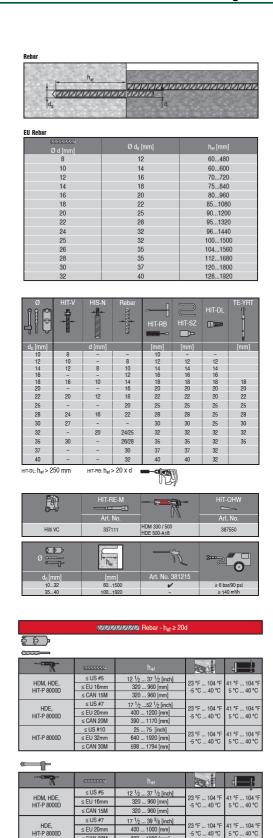

Ø d [inch]	Ø d _o [inch]	h _{er} [inch]	Ø d _f [inch]	T _{max} [ft-lb]	T _{max} [Nm]
3/8	7/16	23/871/2	7/16	15	20
1/2	9/16	23/410	9/16	30	41
5/8	3/4	3 1/8 12 1/2	11/16	60	81
3/4	7/8	3 1/2 15	13/16	100	136
7/8	1	31/2 171/2	15/16	125	169
1	1 1/8	420	11/8	150	203
1 1/4	13/6	525	13/9	200	271


HIT-V

	Ø d₀	h _{et}	Ø d _f	T _{max}
Ø d [mm]	[mm]	[mm]	[mm]	[Nm]
M8	10	60160	9	10
M10	12	60200	12	20
M12	14	70240	14	40
M16	18	80320	18	80
M20	22	90400	22	150
M24	28	100480	26	200
M27	30	110540	30	270
M30	35	120600	33	300

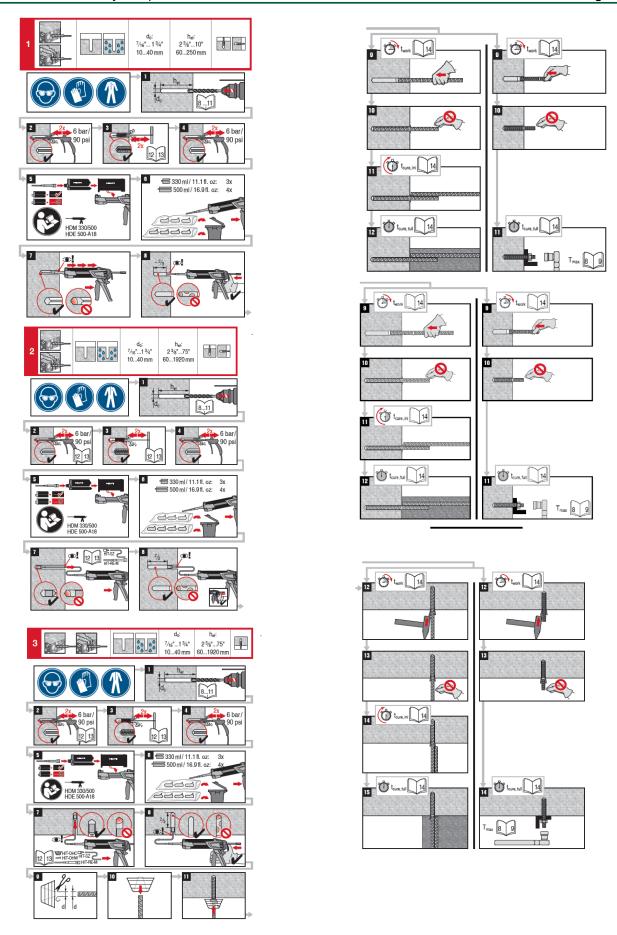
1 inch = 25,4 mm





Ø d [inch]	Ø d₀ [inch]	h _{er} [inch]	Ø d _f [inch]	h₃ [inch]	T _{max} [ft-lb]	T _{max} [Nm]
3/8	11/16	4 ³ /8	7/16	3/8 ¹⁵ /16	15	20
1/2	7/8	5	9/16	1/21 3/16	30	41
5/8	1 1/8	63/4	11/16	5/81 1/2	60	81
3/4	1 1/4	81/8	13/16	3/417/8	100	136

Danamana	Ø d₀		Ø d _f		T _{max}
Ø d [mm]	[mm]	[mm]	[mm]	[mm]	[Nm]
M8	14	90	9	820	10
M10	18	110	12	1025	20
M12	22	125	14	1230	40
M16	28	170	18	1640	80
M20	32	205	22	2050	150



≤ EU 20mm

HIT-P 8000D

400 ... 1000 [mm]

5 °C ... 40 °C

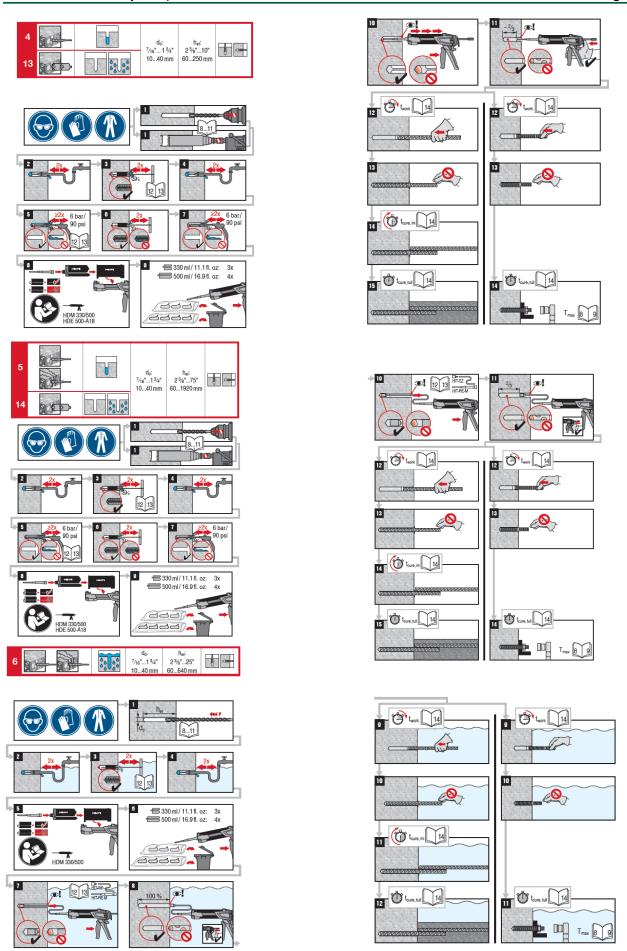


FIGURE 9A—MANUFACTURER'S PRINTED INSTALLATION INSTRUCTIONS (MPII) (Continued)

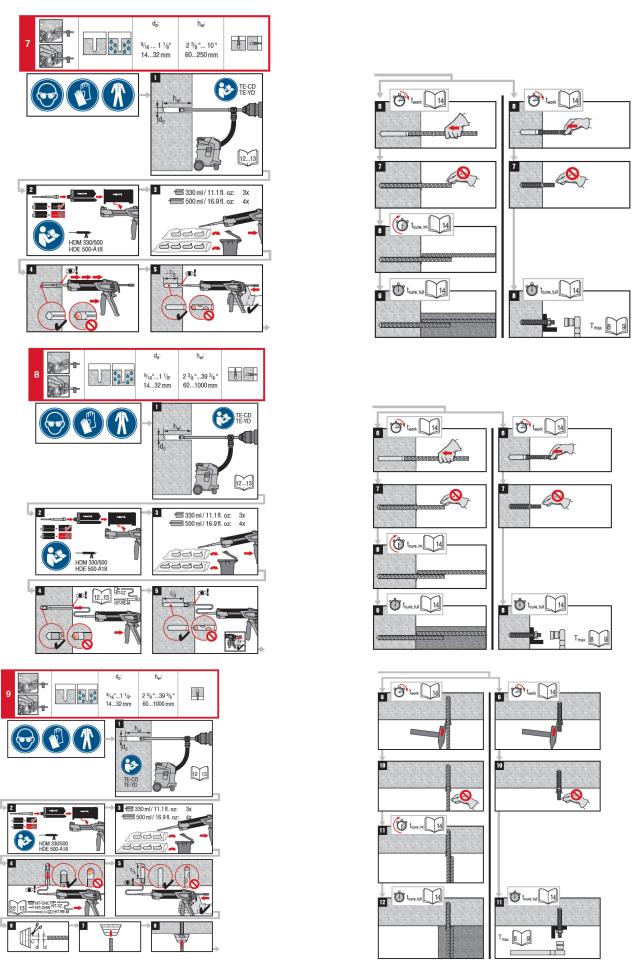


FIGURE 9A—MANUFACTURER'S PRINTED INSTALLATION INSTRUCTIONS (MPII) (Continued)

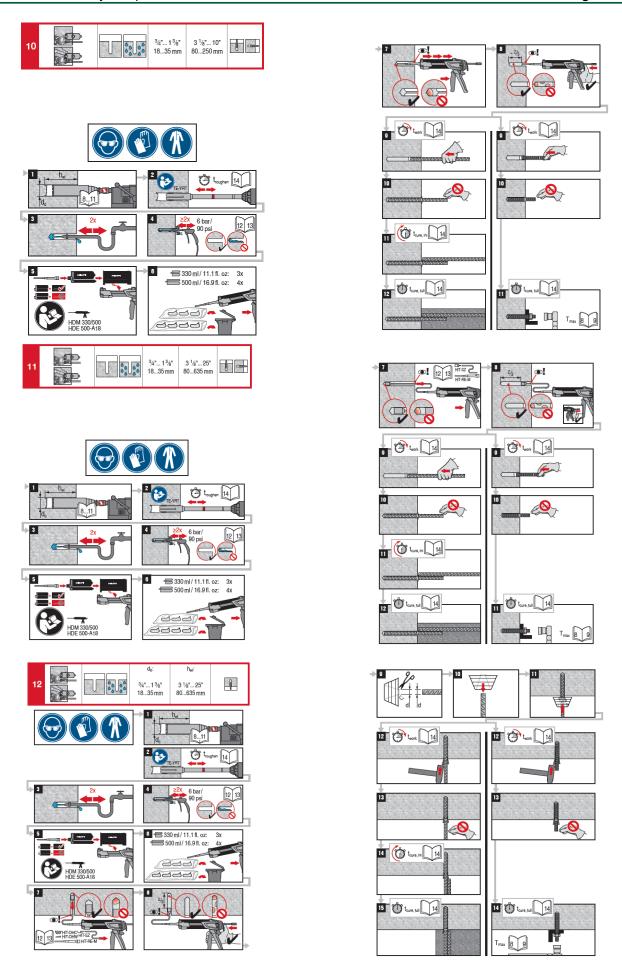
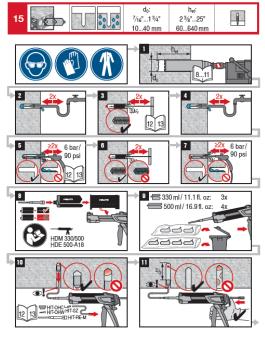



FIGURE 9A—MANUFACTURER'S PRINTED INSTALLATION INSTRUCTIONS (MPII) (Continued)

en

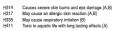
Adhesive anchoring system for rebar and anchor fastenings in concrete

Prior to use of product, follow the instructions for use and the legally obligated safety pn

See the Safety Data Sheet for this product.

Contains epoxy constituents. May produce an allergic reaction.(A)

Contains: reaction product: biophenol-AF-(epichlorhytidni) epoxy resin MW ≤ 700 (A), butanedioldiglycidyl ether (A),


m-Xylenediamine (B), 2-methyl-1,5-pentanediamine (B)

P280 P260 P303+P361+P353 Wear protective gloves/protective clothing/eye protection/face protection.

Do not breathe vapours.

IF ON SKIN (or hair): Remove/Take off immediately all contaminated clothing. Rinse skin with

watersnower.
IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing. P333+P313 If skin irritation or rash occurs: Get medical advice/attention.
P337+P313 If eye irritation persists: Get medical advice/attention.

Recommended protective equipment:

Ere protective equipment:

Ere protective Triphity esoled saletyl gasses e.g.: e02065449 Salety glasses PP EY-CA NCH clear;

e020655951 Gogges PE EY-HA R PICHAF clear;

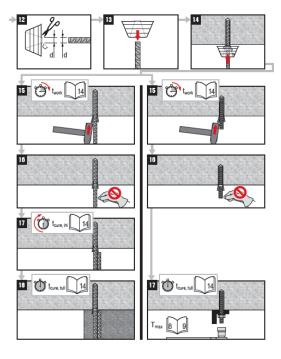
Protective planes: EN 374 - (Material of glones: Nitrie nobber, NBR

Avoid direct contact with the chemical the protective protective programs protective prote

Emeth packs:

➤ Leave the Mixer attached and dispose of via the local Green Dot collecting system

— or EAK waste material code 15 01 02 plastic packaging.



Fall or sartially emplied sacks:

• dispose of as special waste in accordance with official regulations.

- EAK waster material code: 20 to 12°P part, inks, adheeives and resins containing dangerous substances.

- or waste material code: EAK 08 04 09° waste adheatives and sealants containing organic solvents or other dangerous substances.

Failure to observe these installation instructions, use of non-Hilli anchors, poor or questionable concrete conditions, or unique applications may affect the reliability or performance of the fasterings.

- INVIDUAL INVIDIDATION

 Always keep this instruction for use together with the product.

 Ensure that the instruction for use is with the product when it is given to other persons.

 Safety Bats Steet: Review the DS before use.

 Checks capitalised after Deservision date import on ordipack manifold (monthlysar). Do not use expired product.

 Fall pack temperature during suspect -5 °C to 40°C /14 °F; to 104°F.

 Centifilises for transpert and stranger Keep in a cook dy and dark place between +5 °C to 25 °C /

 41 °F to 77 °F.

 For any application not covered by this dominant I have a continued to the continued of the c
- +1 °F to 7 ′ °F.
 For any application not covered by this document/ beyond values specified, please contact Hiti.
 Partly seed fell packs must be used up within 4 weeks. Leave the mixer attached on the foil pack manifold and store under the recommended storage conditions. If reused, attach a new mixer and discard the initial quantity of anchor advantage.

WARNING

- A Improper handling may cause mortar splashes. Eye contact with mortar may cause irreversible eye damaget.

 Always wear lightly sealed salely glasses, gloves and protective clothes before handling the mortar!

 Never last dispensing without a mixer properly scowed on.

 When using an extension hose:

 All ship is a reserved to the contract of initial mortar flow must be done through supplied mixer only (not through the extension hose).

the extension hose).

Allach a new miner prior to dispensing a new foil pack (snug fit).

Caution! Never remove the mixer while the foil pack system is under pressure. Press the release button of the dispenser to sould moratize plasting.

Use only the type of mixer supplied with the adhesive. Do not modify the mixer in any way.

Never use damage toli packs and/of samaged or unclean foil pack holders.

A Peer load values / selfential failure of Isateline spirits due to isadequels berehold cleaning. The bereholds must be dry and fixed of dehirs, fast, value; i.e., if gives and with creatismisatize prior to adhesive injection.

For blowing out the borehole - blow out with oil the air unit return air otheran in the oil noticeable dust.

For full be borehole - livel with water first pressure until water must be considered.

Important Remove all water from the borehole and blow out with oil first compressed air until borehole is completely dried before borehole report of the applicable to humane entitled hold in underwater applications.

sure that bercholes are filled from the back of the bercholes without forming air voids If necessary, use the accessories / extensions to reach the back of the borehole.

- In inequality, user in extraordinary to the fact that the control of the control

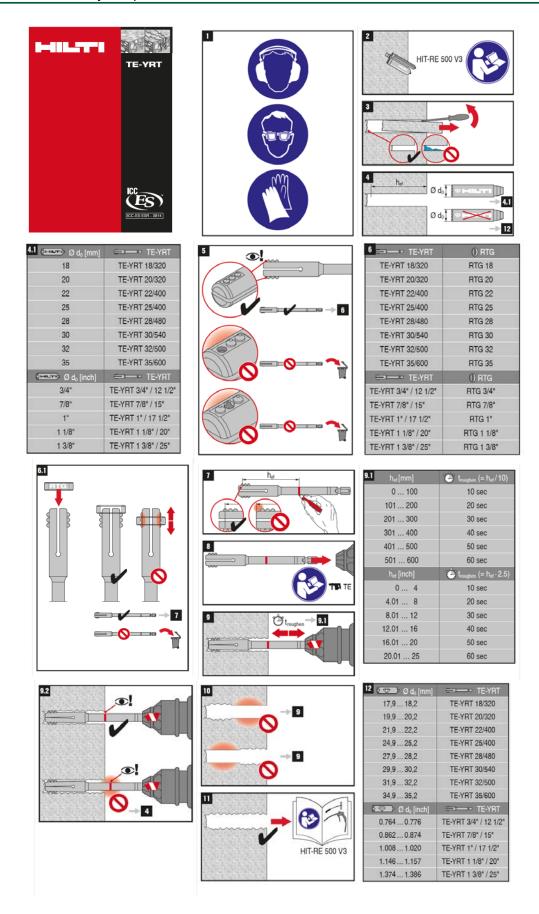


FIGURE 9B—MANUFACTURER'S PRINTED INSTALLATION INSTRUCTIONS (MPII)

ICC-ES Evaluation Report

ESR-3814 LABC and LARC Supplement

Reissued January 2021 Revised March 2021 This report is subject to renewal January 2023.

www.icc-es.org | (800) 423-6587 | (562) 699-0543

A Subsidiary of the International Code Council®

DIVISION: 03 00 00—CONCRETE Section: 03 16 00—Concrete Anchors

DIVISION: 05 00 00—METALS

Section: 05 05 19—Post-Installed Concrete Anchors

REPORT HOLDER:

HILTI, INC.

EVALUATION SUBJECT:

HILTI HIT-RE 500 V3 ADHESIVE ANCHORS AND POST-INSTALLED REINFORCING BAR CONNECTIONS IN CRACKED AND UNCRACKED CONCRETE

1.0 REPORT PURPOSE AND SCOPE

Purpose:

The purpose of this evaluation report supplement is to indicate that the Hilti HIT RE 500 V3 Adhesive Anchoring System and Post-Installed Reinforcing Bar System for cracked and uncracked concrete, described in ICC-ES evaluation report <u>ESR-3814</u>, has also been evaluated for compliance with the codes noted below as adopted by the Los Angeles Department of Building and Safety (LADBS).

Applicable code editions:

- 2020 City of Los Angeles Building Code (LABC)
- 2020 City of Los Angeles Residential Code (LARC)

2.0 CONCLUSIONS

The Hilti HIT-RE 500 V3 Adhesive Anchoring System and Post-Installed Reinforcing Bar System for cracked and uncracked concrete, described in Sections 2.0 through 7.0 of the evaluation report ESR-3814, complies with LABC Chapter 19, and LARC, and is subject to the conditions of use described in this supplement.

3.0 CONDITIONS OF USE

The Hilti HIT RE 500 V3 Adhesive Anchoring System and Post-Installed Reinforcing Bar System described in this evaluation report supplement must comply with all of the following conditions:

- All applicable sections in the evaluation report <u>ESR-3814</u>.
- The design, installation, conditions of use and labeling of the Hilti HIT-RE 500 V3 Adhesive Anchoring System and Post-Installed Reinforcing Bar System are in accordance with the 2018 *International Building Code*[®] (IBC) provisions noted in the evaluation report ESR-3814.
- The design, installation and inspection are in accordance with additional requirements of LABC Chapters 16 and 17, as applicable.
- Under the LARC, an engineered design in accordance with LARC Section R301.1.3 must be submitted.
- The allowable and strength design values listed in the evaluation report and tables are for the connection of the adhesive anchors and post installed reinforcing bars to the concrete. The connection between the adhesive anchors or post installed reinforcing bars and the connected members shall be checked for capacity (which may govern).
- For use in wall anchorage assemblies to flexible diaphragm, anchors shall be designed per the requirements of City of Los Angeles Information Bulletin P/BC 2020-071.

This supplement expires concurrently with the evaluation report, reissued January 2021 and revised March 2021.

ICC-ES Evaluation Report

ESR-3814 FBC Supplement

Reissued January 2021 Revised March 2021 This report is subject to renewal January 2023.

www.icc-es.org | (800) 423-6587 | (562) 699-0543

A Subsidiary of the International Code Council®

DIVISION: 03 00 00—CONCRETE Section: 03 16 00—Concrete Anchors

DIVISION: 05 00 00—METALS

Section: 05 05 19—Post-Installed Concrete Anchors

REPORT HOLDER:

HILTI, INC.

EVALUATION SUBJECT:

HILTI HIT-RE 500 V3 ADHESIVE ANCHORS AND POST-INSTALLED REINFORCING BAR CONNECTIONS IN CRACKED AND UNCRACKED CONCRETE

1.0 REPORT PURPOSE AND SCOPE

Purpose:

The purpose of this evaluation report supplement is to indicate that the Hilti HIT-RE 500 V3 Adhesive Anchors and Post-Installed Reinforcing Bar System in Concrete, described in ICC-ES evaluation report ESR-3814, has also been evaluated for compliance with the codes noted below.

Applicable code editions:

- 2020 Florida Building Code—Building
- 2020 Florida Building Code—Residential

2.0 CONCLUSIONS

The Hilti HIT-RE 500 V3 Adhesive Anchor System and Post-Installed Reinforcing Bar System, described in Sections 2.0 through 7.0 of ICC-ES evaluation report ESR-3814, comply with the *Florida Building Code—Building* and the *Florida Building Code—Residential*, provided the design requirements are determined in accordance with the *Florida Building Code—Building* or the *Florida Building Code—Residential*, as applicable. The installation requirements noted in ICC-ES evaluation report ESR-3814 for the 2018 *International Building Code*® meet the requirements of the *Florida Building Code—Building* or the *Florida Building Code—Residential*, as applicable.

Use of the Hilti HIT-RE 500 V3 Adhesive Anchor System and Post-Installed Reinforcing Bar System has also been found to be in compliance with the High-Velocity Hurricane Zone provisions of the *Florida Building Code—Building* and the *Florida Building Code—Residential* with the following condition.

a) For anchorage of wood members, the connection subject to uplift, must be designed for no less than 700 pounds (3114 N).

For products falling under Florida Rule 61G20-3, verification that the report holder's quality-assurance program is audited by a quality-assurance entity approved by the Florida Building Commission for the type of inspections being conducted is the responsibility of an approved validation entity (or the code official, when the report holder does not possess an approval by the Commission).

This supplement expires concurrently with the evaluation report, reissued January 2021 and revised March 2021

