

ΕN

DECLARATION OF PERFORMANCE

DoP 0190

for fischer injection system FIS EM Plus (Bonded fastener for use in concrete)

1. Unique identification code of the product-type:	DoP 0190		
 <u>Intended use/es:</u> <u>Manufacturer:</u> 	Post-installed fastening in cracked or uncracked c See appendix, especially annexes B fischerwerke GmbH & Co. KG, Otto-Hahn-Straße 1	1- B13	nany
4. Authorised representative:	-		
5. System/s of AVCP:	1		
 <u>European Assessment Document:</u> European Technical Assessment: Technical Assessment Body: Notified body/ies: 	EAD 330499-01-0601 ETA-17/0979; 2020-06-17 DIBt- Deutsches Institut für Bautechnik 1343 MPA Darmstadt / 2873 TU Darmstadt		
7. Declared performance/s:			
Mechanical resistance and stability (BWR 1) Characteristic resistance to tension load (static and quasi-static loading):	Resistance to steel failure: Resistance to combined pull- out and concrete cone failure:	Annexes C1- C3 Annexes C5- C12	E _S = 210 000 MPa ψ ⁰ _{sus} = NPD
	Resistance to concrete cone failure: Edge distance to prevent splitting under load:	Annex C4 Annexes C4	
	Robustness: Maximum installation torque:	Annex C4 Annexes B6- B8	
	Minimum edge distance and spacing:	Annexes B4, B5	
Characteristic resistance to shear load (static and quasi-static loading):	Resistance to steel failure: Resistance to pry-out failure: Resistance to concrete edge failure:	Annexes C1- C3 Annex C4 Annex C4	
Characteristic resistance and displacements for seismic performance categories C1 and C2:	Resistance to tension load, displacements, category C1: Resistance to tension load, displacements,	Annexes C15- C17 Annexes C15, C16, C18	3
	category C2:)
	Resistance to shear load, displacements, category C1:	Annexes C15- C17	
	Resistance to shear load, displacements, category C2:	Annexes C15, C16, C18	3
	Factor annular gap:	Annex C15	
Displacements under short-term and long-term loading:	Displacements under short-term and long-term loading:	Annexes C13, C14	

Hygiene, health and the environment (BWR 3) Content, emission and/or release of dangerous NPA substances:

8. <u>Appropriate Technical Documentation and/or</u> <u>Specific Technical Documentation:</u>

The performance of the product identified above is in conformity with the set of declared performance/s. This declaration of performance is issued, in accordance with Regulation (EU) No 305/2011, under the sole responsibility of the manufacturer identified above.

Signed for and on behalf of the manufacturer by:

ppc. The MA

Thilo Pregartner, Dr.-Ing. Tumlingen, 2020-07-02

i.V. P. St

Peter Schillinger, Dipl.-Ing.

This DoP has been prepared in different languages. In case there is a dispute on the interpretation the English version shall always prevail.

The Appendix includes voluntary and complementary information in English language exceeding the (language-neutrally specified) legal requirements.

Specific Part

1 Technical description of the product

The "fischer injection system FIS EM Plus" is a bonded fastener consisting of a cartridge with injection mortar fischer FIS EM Plus and a steel element according to Annex A5.

The steel element is placed into a drilled hole filled with injection mortar and is anchored via the bond between metal part, injection mortar and concrete.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

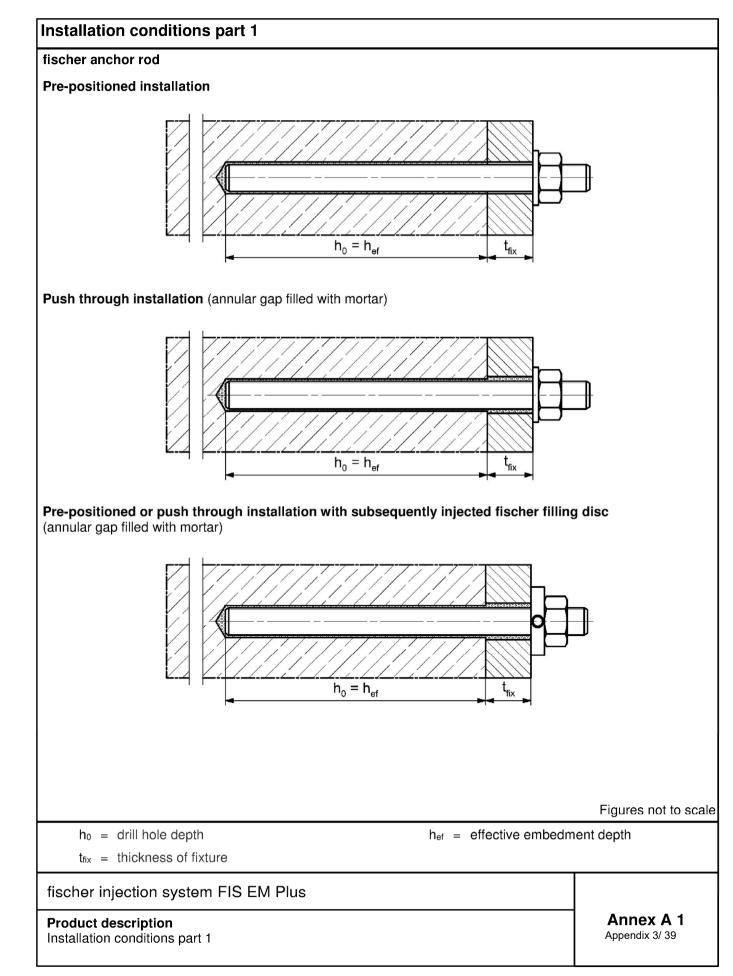
The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

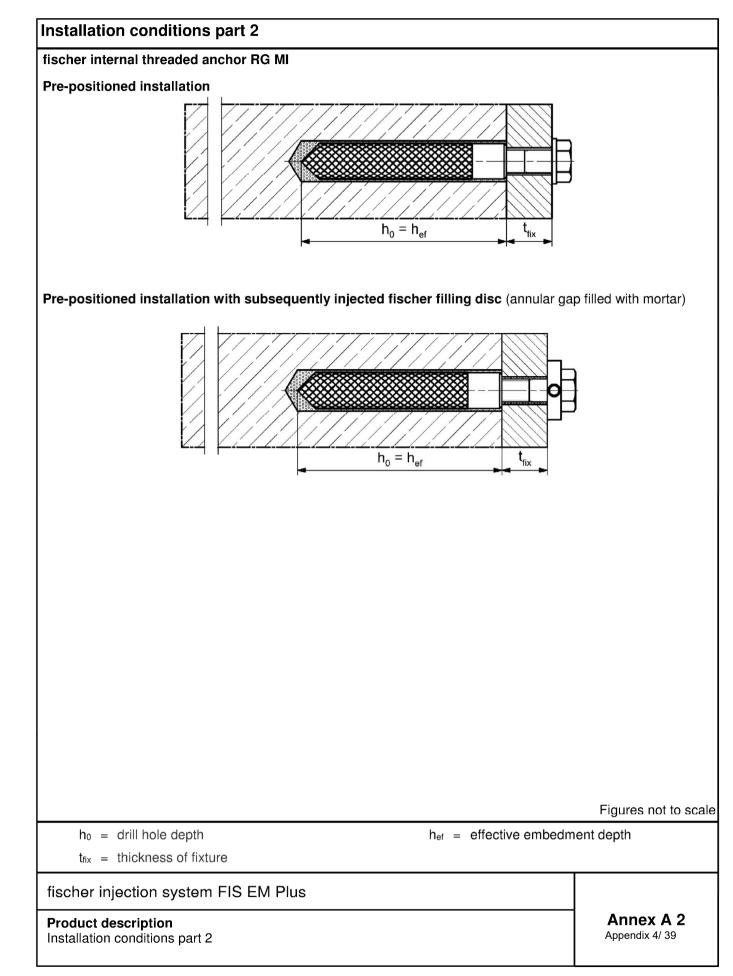
The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 or 100 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

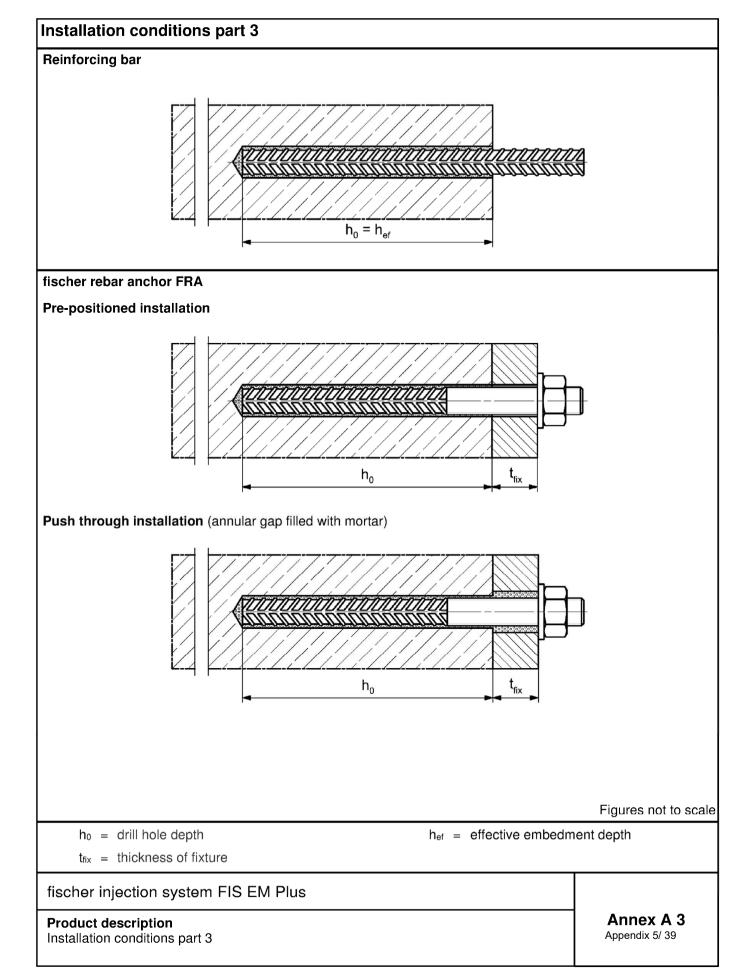
3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance to tension load (static and quasi-static loading)	See Annex B 3 to B 8, C 1 to C 12
Characteristic resistance to shear load (static and quasi-static loading)	See Annex C 1 to C 4
Displacements under short-term and long-term loading	See Annex C 13 and C 14
Characteristic resistance and displacements for seismic performance categories C1 and C2	See Annex C 15 to C 18


3.2 Hygiene, health and the environment (BWR 3)


Essential characteristic	Performance
Content, emission and/or release of dangerous substances	No performance assessed


4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with the European Assessment Document EAD 330499-01-0601 the applicable European legal act is: [96/582/EC].

The system to be applied is: 1

Overview system components part 1	
Injection cartridge (shuttle cartridge) with sealing cap; Size: 390 ml, 585 ml, 1100 ml	, 1500 ml
Imprint: fischer FIS EM Plus, processing notes, shelf-life, pistor scale (optional), curing times and processing times (depending temperature), hazard code, size, volume	on i i i
Static mixer FIS MR Plus or UMR	
Injection adapter and Extension tube for static mixer	
	3
Cleaning brush BS / BSB	
SA DATATATATATATATATATATATATATATATATATATA	
Blow-out pump ABP	
PACE AND	
	Figures not to scale
fischer injection system FIS EM Plus	
Product description Overview system components part 1; cartridges / static mixer / accessories	Annex A 4 Appendix 6/ 39

Overview system components part 2	
fischer anchor rod	
Size: M8, M10, M12, M14, M16, M20, M22, M24, M27, M30	
fischer internal threaded anchor RG MI	
Size: M8, M10, M12, M16, M20	
Screw / threaded rod / washer / hexagon nut	
fischer filling disc with injection adapter	
Reinforcing bar	
Nominal diameter: \$\$, \$10, \$12, \$14, \$16, \$18, \$20, \$22, \$24, \$25, \$26, \$28, \$30, \$32, \$3	4,
fischer rebar anchor FRA	
Size: M12, M16, M20, M24	
	Figures not to scale
fischer injection system FIS EM Plus	
Product description Overview system components part 2; steel components	Annex A 5 Appendix 7/ 39

Table A6.1: **Materials** Part Designation Material 1 Injection cartridge Mortar, hardener, filler High corrosion Steel Stainless steel R resistant steel HCR acc. to EN 10088-1-2014 acc. to EN 10088-1-2014 Steel grade Corrosion resistance class Corrosion resistance class zinc plated CRC III CRC V acc. to EN 1993-1-4:2015 acc. to EN 1993-1-4:2015 Property class 50, 70 or 80 Property class 4.8. 5.8 or 8.8: Property class 50 or 80 EN ISO 898-1:2013 EN ISO 3506-1:2009 EN ISÓ 3506-1:2009 zinc plated \geq 5 μ m, 1.4401: 1.4404: 1.4578: or property class 70 with ISO 4042:2018/Zn5/An(A2K) 1.4571; 1.4439; 1.4362: $f_{vk} = 560 \text{ N/mm}^2$ or hot dip galvanised ≥ 40 μḿ 1.4062, 1.4662, 1.4462; 1,4565: 1,4529: EN ISO 10684:2004 EN 10088-1.2014 EN 10088-1:2014 2 Anchor rod f_{uk} ≤ 1000 N/mm² $f_{\rm uk} \le 1000 \text{ N/mm}^2$ $f_{uk} \le 1000 \text{ N/mm}^2$ $A_5 > 12\%$ $A_5 > 12\%$ $A_5 > 12\%$ fracture elongation fracture elongation fracture elongation Fracture elongation $A_5 > 8$ %, for applications without requirements for seismic performance category C2 zinc plated \geq 5 µm. 1.4401: 1.4404: 1.4565: 1.4529: Washer ISO 4042 2018/Zn5/An(A2K) 1.4578:1.4571: EN 10088-1:2014 3 ISO 7089-2000 or hot dip galvanised ≥ 40 um 1.4439; 1.4362; EN ISO 10684:2004 EN 10088-1:2014 Property class 4, 5 or 8; Property class Property class EN ISO 898-2:2012 50, 70 or 80 50, 70 or 80 zinc plated \geq 5 μ m, EN ISO 3506-1:2009 EN ISO 3506-1:2009 4 Hexagon nut ISO 4042:2018/Zn5/An(A2K) 1.4565: 1.4529 1.4401: 1.4404: 1.4578: or hot dip galvanised ≥ 40 uḿ 1.4571; 1.4439; 1.4362; EN 10088-1:2014 EN ISO 10684:2004 EN 10088-1:2014 Property class 5.8 Property class 70 Property class 70 ISO 898-1:2013 EN ISO 3506-1:2009 EN ISO 3506-1:2009 fischer 5 zinc plated \geq 5 μ m, internal threaded anchor 1.4401: 1.4404: 1.4578: 1.4565: 1.4529: 1.4571; 1.4439; 1.4362; BG MI ISO 4042:2018/Zn5/An(A2K) EN 10088-1.2014 EN 10088-1:2014 Property class 70 Property class 5.8 or 8.8; Property class 70 Commercial standard ĖN IŚO 898-1:2013 EN ISO 3506-1:2009 EN ISO 3506-1:2009 screw or threaded rod zinc plated \geq 5 µm. 1.4401: 1.4404: 1.4578: 1.4565: 1.4529: 6 for fischer internal 1.4571; 1.4439; 1.4362; ISO 4042 2018/Zn5/An(A2K) EN 10088-1:2014 threaded anchor $A_5 > 8 \%$ EN 10088-1:2014 $A_5 > 8\%$ RG MI fracture elongation $A_5 > 8$ % fracture elongation fracture elongation zinc plated \geq 5 μ m, 1.4401; 1.4404; 1.4578; 1.4565;1.4529; ISO 4042:2018/Zn5/An(A2K) 1.4571; 1.4439; 1.4362; fischer filling disc EN 10088-1:2014 7 EN 10088-1:2014 similar to DIN 6319-G or hot dip galvanised $\geq 40 \, \mu m$ EN ISO 10684:2004 Reinforcing bar Bars and de-coiled rods, class B or C with 8 EN 1992-1-1:2004 and fvk and k according to NDP or NCL according to EN 1992-1-1/NA AC:2010, Annex C $f_{uk} = f_{tk} = \mathbf{k} \cdot f_{vk}$ Threaded part: Property class 70 or 80 EN ISO 3506-1:2009 1.4401, 1.4404, 1.4571, 1.4578, 1.4439, Rebar part: Bars and de-coiled rods class B or C with fvk 1.4362, 1.4062 acc. to EN 10088-1:2014 fischer 9 and k according to NDP or NCL of EN Corrosion resistance class CRC III rebar anchor FRA 1992-1-1:2004+AC:2010 acc. to EN 1993-1-4:2015 1.4565; 1.4529 acc. to EN 10088-1:2014 $f_{uk} = f_{tk} = k \cdot f_{vk}$ Corrosion resistance class CRC V acc. to EN 1993-1-4:2015 fischer injection system FIS EM Plus Annex A 6 **Product description** Appendix 8/39 Materials

Table B1.1:	Overview use	e and pe	rformanc	ce catego	ories						
Anchorages subject	to				FIS EI	M Plus wit	th				
		Ancho	or rod	fischer i threadec RG	d anchor		cing bar	anc FF	r rebar chor RA		
Hammer drilling with standard drill bit	2440000000				all s	sizes					
Hammer drilling with hollow drill bit (fischer "FHD", Heller "Duster Expert"; Bosch "Speed Clean"; Hilti "TE-CD, TE-YD", DreBo "D-Plus", DreBo "D-Max")	Ī			Nom		oit diameter to 35 mm	r (d₀)				
Diamond drilling	-										
Static and quasi	uncracked concrete	all sizes	Tables: C1.1 C4.1	all sizes	Tables: C2.1 C4.1	all sizes	Tables: C3.1 C4.1	all sizes	Tables: C3.2 C4.1		
static load, in	cracked concrete	all sizes	C5.1 C6.1 C13.1	all sizes	C7.1 C8.1 C13.2	all 51205	C9.1 C10.1 C14.1		C11.1 C12.1 C14.2		
Seismic performance category (only	C1	M10 to M30	Tables: C15.1 C16.2 C17.1	1	1)	φ10 to φ32	Tables: C16.1 C16.2 C17.2		1)		
hammer drilling with standard / hollow drill bits)	ו C2	M12 M16 M20 M24	Tables: C15.1 C16.2 C18.1			_1)	_1)				
Use	dry or wet concrete				all s	sizes					
category I2	noie		,	•			•	fe 100 year	,		
Installation direction	1	D3 (d	ownward	and horizo	ntal and u	upwards (e	e.g. overh	ead) install	ation)		
Installation temperature				T _{i,min}	= -5 °C to	$T_{i,max} = +4$	40 °C				
In-service	Temperature range I	-40) °C to +60) °C		ort term ter g term tem					
temperature	Temperature range II	-40) °C to +72	2 °C		ort term ter g term tem					
¹⁾ no performance	e assessed										
fischer injection	system FIS	EM Plus	;								
Intended use Specifications (part 1) Appendix 9/ 39											

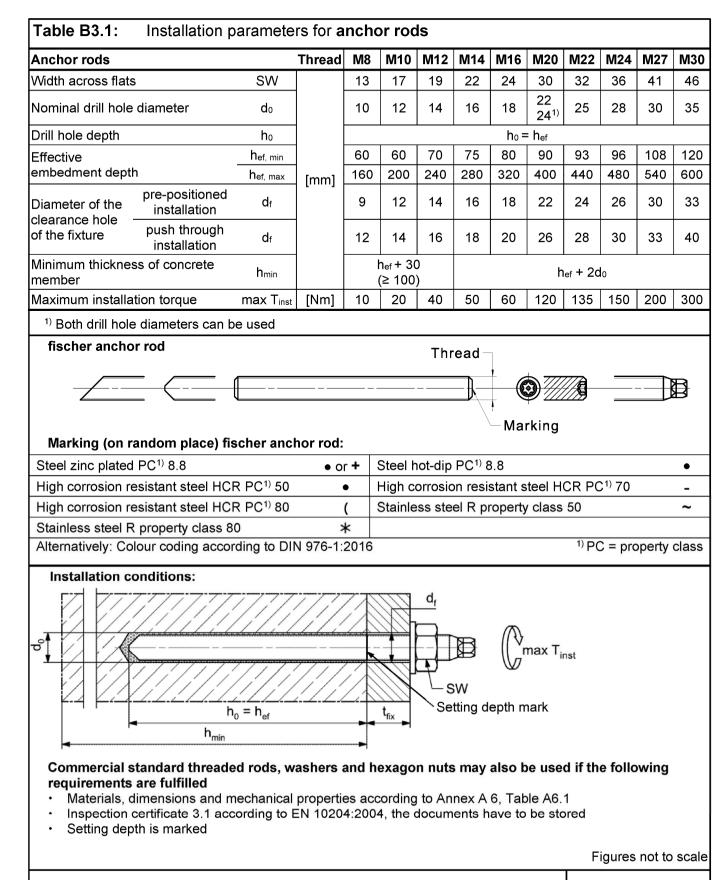
Specifications of intended use (part 2)

Base materials:

Compacted reinforced or unreinforced normal weight concrete without fibres of strength classes C20/25 to C50/60 according to EN 206:2013+A1:2016

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (zinc coated steel, stainless steel or high corrosion resistant steel).
- For all other conditions according to EN1993-1-4:2015 corresponding to corrosion resistance classes to Annex A 6 table A6.1.


Design:

- Anchorages have to be designed by a responsible engineer with experience of concrete anchor design.
- Verifiable calculation notes and drawings are to be prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e. g. position of the anchor relative to reinforcement or to supports, etc.).
- Anchorages are designed in accordance with: EN 1992-4:2018 and EOTA Technical Report TR 055, Edition February 2018

Installation:

- Anchor installation is to be carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site
- · In case of aborted hole: The hole shall be filled with mortar
- · Anchorage depth should be marked and adhered to on installation
- · Overhead installation is allowed

fischer injection system FIS EM Plus

Annex B 3

Appendix 11/ 39

fischer injection system FIS EM Plus

Intended use

Installation parameters anchor rods

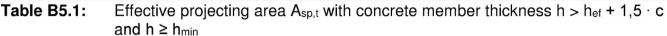
Table B4.1:Minimum spacing and minimum edge distance for anchor rods and
reinforcing bars

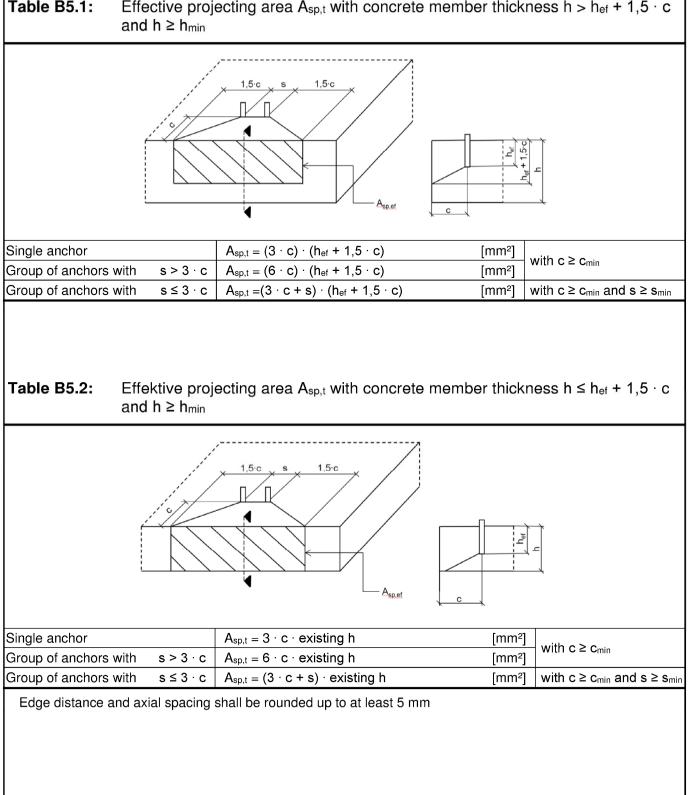
remorcing ba													
Anchor rods			M8	M10	M12	M14	M16	-	M20	M22	M24		
Reinforcing bars (nominal diamete	er)	φ	8	10	12	14	16	18	20	22	24		
Minimum edge distance													
Uncracked / cracked concrete	Cmin	[mm]	40	45	45	45	50	55	55	55	60		
Minimum spacing	Smin	[]	according to Annex B5										
Minimum spacing						-			-				
Uncracked / cracked concrete	Smin	[mm]	40	45	55	60	65	85	85	95	105		
Minimum edge distance	[]	according to Annex B5											
Required projecting area													
Uncracked concrete	٨	[1000	8	13	22	23	24	38,5	38,5	39,5	40		
Cracked concrete	A _{sp,req}	mm²]	6,5	10	16,5	17,5	18,5	29,5	29,5	30	30,5		
Anchor rods			-	-	M27	-	M30	-	-	_			
Reinforcing bars (nominal diamete	er)	φ								-	-		
Minimum edge distance			25	26	-	28	30	32	34	36	- 40		
			25	26	-	28	30	32	34	36			
Uncracked / cracked concrete	Cmin	[mm]	25 75	26 75	- 75	28 80	30 80	32 120	34 120	36 135			
-	Cmin Smin	[mm]		-	75		80	120	120		40		
Uncracked / cracked concrete		[mm]		-	75	80	80	120	120		40		
Uncracked / cracked concrete Minimum spacing				-	75	80	80	120	120		40		
Uncracked / cracked concrete Minimum spacing Minimum spacing	Smin	[mm]	75	75	75	80 accordii	80 ng to Ar 140	120 nnex B5 160	120	135	40 175		
Uncracked / cracked concrete Minimum spacing Minimum spacing Uncracked / cracked concrete	Smin Smin		75	75	75	80 accordii 140	80 ng to Ar 140	120 nnex B5 160	120	135	40 175		
Uncracked / cracked concrete Minimum spacing Minimum spacing Uncracked / cracked concrete Minimum edge distance Required projecting area Uncracked concrete	Smin Smin Cmin	[mm]	75	75	75	80 accordii 140	80 ng to Ar 140	120 nnex B5 160	120	135	40 175		
Uncracked / cracked concrete Minimum spacing Minimum spacing Uncracked / cracked concrete Minimum edge distance Required projecting area Uncracked concrete	Smin Smin	[mm]	75	75	75	80 accordin 140 accordin	80 ng to Ar 140 ng to Ar	120 nnex B5 160 nnex B5	120 5 160	135	40		

Splitting failure for minimum edge distance and spacing in dependence of the effective embedment depth h_{ef} .

For the calculation of minimum spacing and minimum edge distance of anchors in combination with different embedment depths and thicknesses of concrete members the following equation shall be fulfilled:

 $A_{sp,req} < A_{sp,t}$

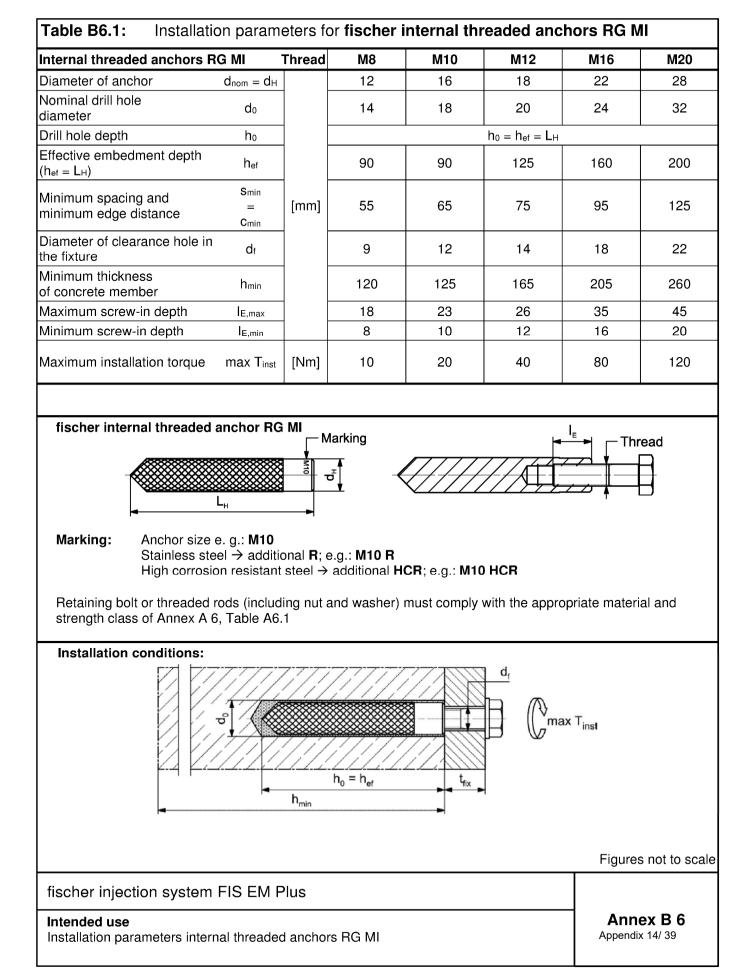

 $A_{sp,req}$ = required projecting area $A_{sp,t} = A_{sp,ef}$ = effective projecting area (according to Annex B5)

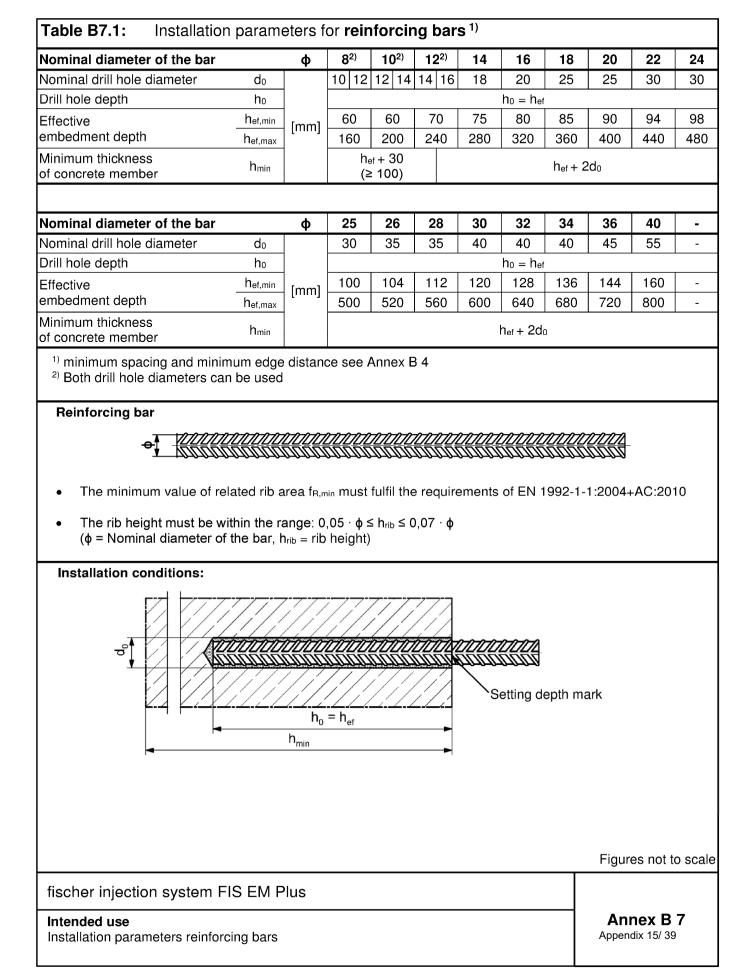

fischer injection system FIS EM Plus

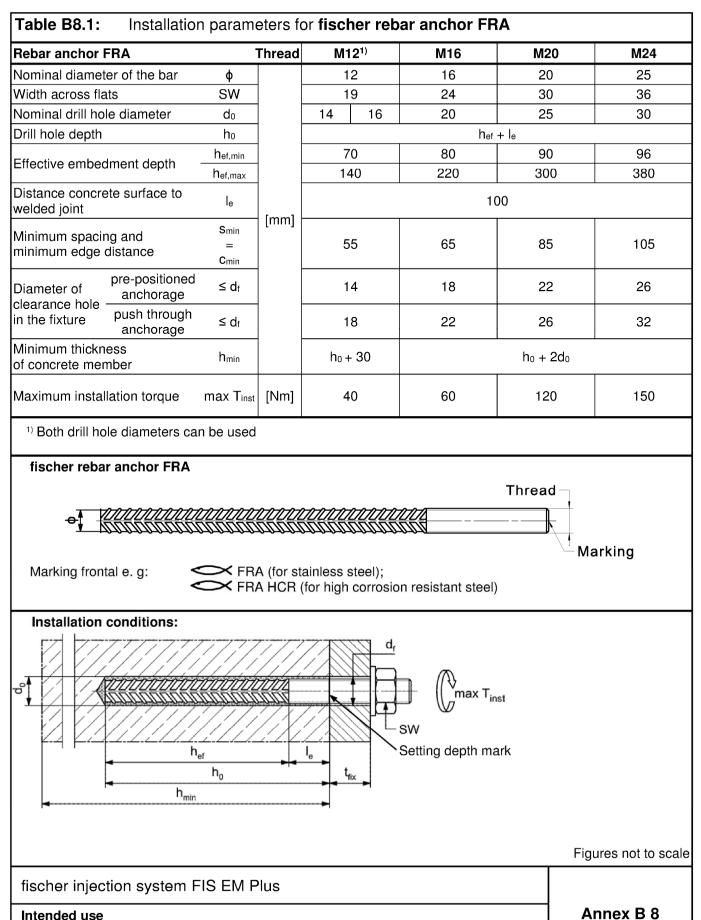
Intended use

Minimum spacing and edge distance for anchor rods and reinforcing bars

Annex B 4 Appendix 12/ 39


Figures not to scale

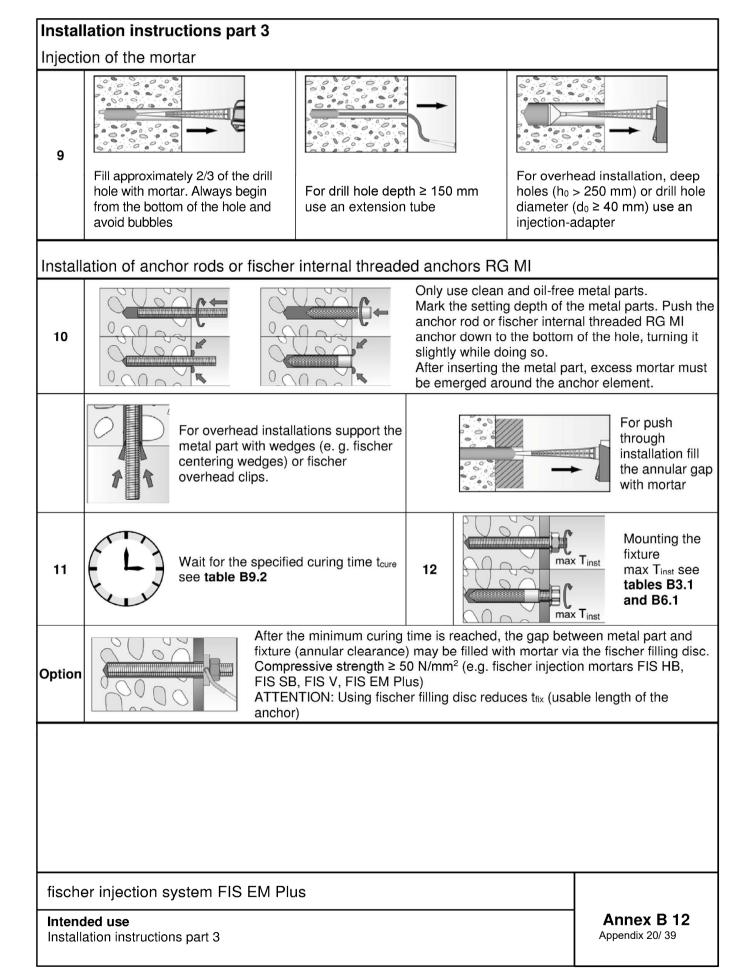

fischer injection system FIS EM Plus

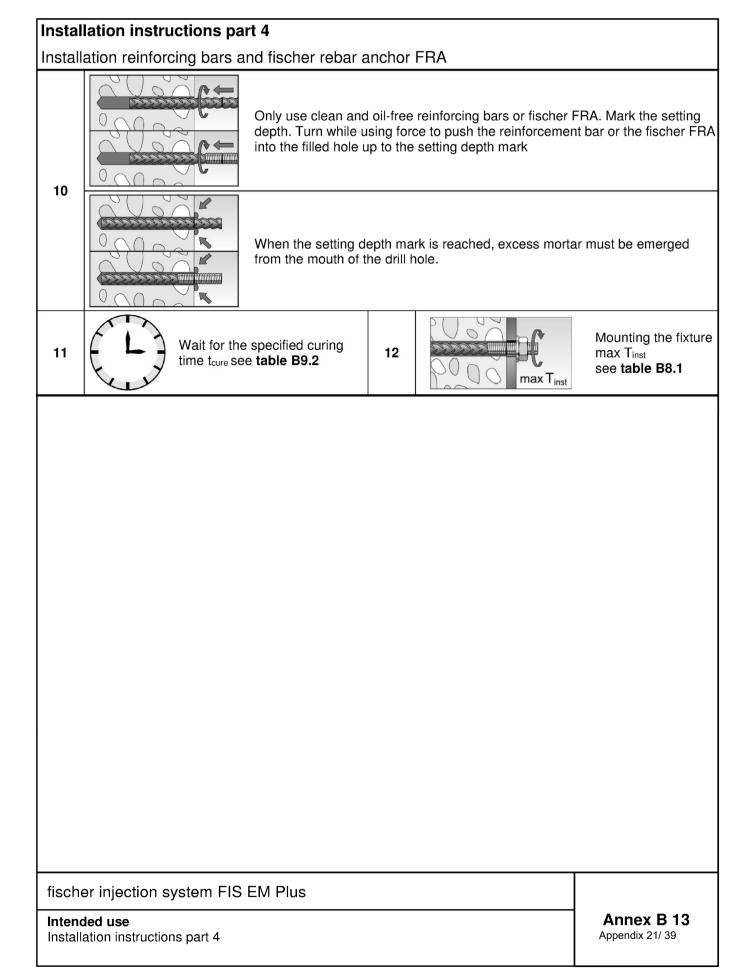

Intended use

Minimum thickness of concrete member for anchor rods, minimum spacing and edge distance

Annex B 5 Appendix 13/39


Installation parameters rebar anchor FRA


Appendix 16/ 39


Parameters of the **cleaning brush BS** / **BSB** (steel brush with steel bristles) Table B9.1: The size of the cleaning brush refers to the drill hole diameter Nominal drill hole 10 12 14 16 18 20 24 25 28 30 32 35 40 45 55 d۵ diameter Steel brush 11 14 16 20 25 26 27 30 40 dь [mm] diameter BS Steel brush 42 47 58 dь _ _ _ _ _ diameter BSB റ് Table B9.2 Maximum processing time of the mortar and minimum curing time (During the curing time of the mortar the concrete temperature may not fall below the listed minimum temperature) Temperature at Minimum curing time ¹⁾ Maximum processing time anchoring base twork tcure [°C] 0 2) -5 to 240 min 200 h 5²⁾ > 0 to 150 min 90 h 40 h > 5 to 10 120 min > 10 to 20 30 min 18 h > 20 to 30 14 min 10 h > 30 to 40 7 min 5 h ¹⁾ In wet concrete or water filled holes the curing times must be doubled ²⁾ Minimal cartridge temperature +5°C fischer injection system FIS EM Plus Annex B 9 Intended use

Cleaning brush (steel brush) Processing time and curing time

Table C1.1: Characteristic values for steel failure under tension / shear load of fischer anchor rods and standard threaded rods

				1			-									
Anchor rod / standard thre				M8	M10	M12	M14	M16	M20	M22	M24	M27	M30			
Bearing capacity under ter	nsion load		el fai	1			1	1	1			1				
Steel zinc plated		4.8			23(21)	33	46	63	98	121	141	184	224			
Steel zinc plated	st ∾	5.8			29(27)	43	58	79	123	152	177	230	281			
Characteristic Characteristic Stainless steel R and high corrosion	Property class	8.8	[kN]	29(27)	47(43)	68	92	126	196	243	282	368	449			
Stainless steel R and	Dro Dro	50		19	29	43	58	79	123	152	177	230	281			
high corrosion resistant steel HCR		70		26	41	59	81	110	172	212	247	322	393			
Partial factors ¹⁾		80		30	47	68	92	126	196	243	282	368	449			
		4.8						1,5	0							
Steel zinc plated		5.8		1,50												
о ·	Property class	8.8		1,50												
tities steel R and	ropert class	50	[-]	2,86												
high corrosion	_ <u> </u>	70		1,50 ² / 1,87												
resistant steel HCR																
Bearing capacity under sh	ear load,	steel	failu	re ³⁾												
without lever arm																
S ×		4.8		9(8)	14(13)	20	28	38	59	73	85	110	135			
S_{ij}^{ij} Steel zinc plated	Property class	5.8			17(16)	25	34	47	74	91	106	138	168			
Characteristic Sistence of the second		8.8	[kN]		23(21)	34	46	63	98	122	141	184	225			
ह्य में Stainless steel R and		50		9	15	21	29	39	61	76	89	115	141			
O Stainless steel R and high corrosion resistant steel HCR		70 80		13 15	20 23	30	40	55	86	107	124	161	197			
	34	46	63	98	122	141	184	225								
Ductility factor with lever arm		k 7	[-]					1,0)							
		4.8		15(13)	30(27)	52	83	133	259	357	448	665	899			
਼ੁੱਛੇ Steel zinc plated		5.8			37(33)	65	104	166	324	447	560	833	1123			
e ∠	erty	8.8		30(26)	60(53)	105	167	266	519	716	896	1333	l			
C Stainless steel R and high corrosion	Property class	50	[Nm]	19	37	65	104	166	324	447	560	833	1123			
high corrosion	Ē	70		26	52	92	146	232	454	626	784	1167				
🦉 resistant steel HCR		80		30	60	105			519	716	896	1333				
Partial factors ¹⁾																
		4.8						1,2	5							
Steel zinc plated	2	5.8						1,2	5							
al fa	Property class	8.8	[-]					1,2								
$\frac{1}{2} \lesssim Stainless steel R and$		50						2,3								
resistant steel HCR		80						1,3	3							
 In absence of other national action (2) Only admissible for high Values in brackets are v standard threaded rods actional action (2) of the standard threaded rods action (2) o	corrosion alid for un	resis dersi	st. ste zed th	nreaded	rods w	ith sma	aller st									
fischer injection system	n FIS EN	ЛРI	ıs													
Performances Characteristic values for ste		unde	er tens	sion / sh	iear load	d of fis	cher a	nchor	rods	A		ex C 22/ 39	1			

Characteristic values for steel failure under tension / shear load of fischer anchor rods and standard threaded rods

Table C2.1: Characteristic values for steel failure under tension / shear load of fischer internal threaded anchors RG MI

fischer internal	threade	ed anchors	RG MI		M8	M10	M12	M16	M20					
Bearing capacit	y unde	r tension lo	oad, ste	el fail	ure		-	<u>.</u>						
	$\begin{array}{c c} \text{ng capacity under tension load, steel failure} \\ \hline \text{nct.} \\ \text{ance with} & N_{\text{Rk,s}} & \begin{array}{c} Property & 5.8 \\ class & 8.8 \\ \hline Property & R \\ class 70 & HCR \end{array} & \begin{bmatrix} NN \\ 29 \\ 26 \\ 26 \\ 26 \\ 26 \\ 26 \\ 26 \\ 26$		29	43	79	123								
Charact.	NI	class	8.8	[1.1]	29	47	68	108	179					
screw	INRk,s	Property	R	[KIN]	26	41	59	110	172					
001011		class 70	HCR		26	41	59	110	172					
Partial factors ¹⁾														
		Property	5.8				1,50							
Dortial factors		class	8.8	[1,50									
Farliar factors	γMs,N	Property	R	[-]	1,87									
			HCR				1,87							
Bearing capacit	y unde	r shear loa	d, steel	failur	'e									
Without lever a	'n													
-		Property	5.8		9,2	14,5	21,1	39,2	62,0					
Charact.		class	8.8		14,6	23,2	33,7	54,0	90,0					
screw	V [∼] Rk,s	Property	R	[[KIN]	12,8	20,3	29,5	54,8	86,0					
			HCR		12,8	20,3	29,5	54,8	86,0					
Ductility factor			k 7	[-]		•	1,0							
With lever arm														
		Property	5.8		20	39	68	173	337					
Charact. resistance with	M ⁰ Rk,s	class	8.8	[Nm]	30	60	105	266	519					
screw	IVI [°] Rk,s	Property	R	[[1]]	26	52	92	232	454					
		class 70	HCR		26	52	92	232	454					
Partial factors ¹⁾														
		Property	5.8				1,25							
Partial factors	2 4 04 - 34	class	8.8	r_1			1,25							
i ania iaciois	γMs,V	Property	R	- [-] - - -	1,56									
		class 70	HCR				1,56							

¹⁾ In absence of other national regulations

fischer injection system FIS EM Plus

Performances

Characteristic values for steel failure under tension / shear load of fischer internal threaded anchor RG MI

Annex C 2 Appendix 23/ 39

Table C3.1:Characteristic values for steel failure under tension / shear load of
reinforcing bars

								_	-							
Nominal diameter of the bar	φ	8	10 12	14	16	18 2	20 22	24	25	26	28	30	32	34	36	40
Bearing capacity under tension load, st	eel fai	lure	,				_									
Characteristic resistance N _{Rk,s}	[kN]						A	∖s · f u	k ¹⁾							
Bearing capacity under shear load, stee	el failu	re														
Without lever arm																
Characteristic resistance V ⁰ Rk,s	[kN]						0,5	$\cdot A_s$	• f uk ¹)						
Ductility factor k7	[-]							1,0								
With lever arm																
Characteristic resistance M ⁰ Rk,s	[Nm]						1,2	Wel	• f uk	1)						
 ¹⁾ f_{uk} or f_{yk} respectively must be taken from the specifications of the reinforcing bar Table C3.2: Characteristic values for steel failure under tension / shear load of fischer rebar anchors FRA 																
fischer rebar anchor FRA			M12			М	16			M20)	Τ		M2	4	
Bearing capacity under tension load, st	eel fai	lure			1											
Characteristic resistance NRk,s	[kN]		63		Г	1	11			173	}	Т		27	0	
Partial factor ¹⁾																
Partial factor γ _{Ms,N}	[-]							1,4								
Bearing capacity under shear load, stee	el failu	re														
Without lever arm																
Characteristic resistance V ⁰ Rk,s	[kN]		30			5	5			86				12	4	
Ductility factor k7	[-]							1,0								
With lever arm																
Characteristic resistance M ⁰ Rk,s	[Nm]		92			2	33			454	ŀ			78	5	
Partial factor ¹⁾	_															
Partial factor γ _{Ms,V}	[-]							1,56	6							
¹⁾ In absence of other national regulation	S															
fischer injection system FIS EM PI Performances Characteristic values for steel failure und fischer rebar anchors FRA		sion	/ shear	load	of r	reinfo	rcing	bars	and				nex ndix 2			

Size											All	si	zes						
Tension load																			
Installation factor		γinst	[-]				Se	ee a	nne	ex C	5 to	C 1	2 an	d C 17	to C	18			
Factors for the o	compressive stren	gth of		rete	> (C20/2	5												
	C25/30	-										1,0	2						
	C30/37											1,0	4						
Increasing	C35/45											1,0	6						_
factor for τ_{Rk}	C40/50	Ψ_{c}	[-]	1,07															
	C45/55			1,08															
	C50/60											1,0	9						
Splitting failure			•																_
	h / h _{ef} ≥ 2,0										1	,0 ł	າ _{ef}						
Edge distance	2,0 > h / h _{e f} > 1,3	Ccr,sp	[mm]	4,6 h _{ef} - 1,8 h															
	[mm]								2,	26	h _{ef}								
Spacing		2 C _{cr,sp}																	
Concrete cone f	ailure																		
Uncracked concr	[-]	11,0																	
Cracked concrete		7,7																	
Edge distance	[mm]	1,5 h _{ef}																	
Spacing		Scr,N	[]	2 Ccr,N															
Factors for sust	ained tension load	k																	
Factor		$\Psi^{\rm 0}_{\rm sus}$	[-]									_1)							
Shear load				-															
Installation factor		γinst	[-]									1,0)						
Concrete pry-ou	ıt failure		_																
Factor for pry-out	t failure	k ₈	[-]									2,0)						
Concrete edge f	ailure																		
Effective length c shear loading	of fastener in	l _f	[mm]							ım: mi ım: mi				₀m) n; 300 n	nm)				
Calculation dian	neters																		
Size				M	3	M10	ſ	M12		M14	M16	3	M20	M22	M2	4	M27	М	30
fischer anchor ro standard threade		d _{nom}		8		10		12		14	16		20	22	24		27	3	80
fischer internal threaded	anchors RG MI	d _{nom}	[mm]	12	2	16		18		_2)	22		28	_2)	_2)		_2)	-	2)
fischer rebar anc	hor FRA	d _{nom}		_2)		_2)		12		_2)	16		20	_2)	25	;	_2)	-	2)
Size (nominal dia	meter of the bar)		ф	8	10) 12	14	16	18	8 20	22	24	25	26 28	30	32	34 3	36	4
Reinforcing bar		d_{nom}	[mm]	8	10) 12	14	16	18	8 20	22	24	25	26 28	30	32	34	36	4
¹⁾ No performa ²⁾ Anchor type	nce assessed not part of the ETA																		

fischer injection system FIS EM Plus

Performances

Characteristic values for concrete failure under tension / shear load

Annex C 4

Appendix 25/ 39

Table C5.1: Characteristic values for **combined pull-out** and concrete failure for **fischer anchor rods** and **standard threaded rods** in hammer or diamond drilled holes: uncracked or cracked concrete: working life 50 years

	Anchor rod / standard threaded rod M8 M10 M12 M14 M16 M20 M22 M24 M27 M30																
Anchor r	od /	standa	rd threa	ded rod		M8	M10	M12	M14	M16	M20	M22	M24	M27	M30		
Combine	ed pu	ullout a	nd conc	rete con	e failure												
Calculatio	on di	ameter		d	[mm]	8	10	12	14	16	20	22	24	27	30		
Uncracke	ed co	oncrete	•														
Characte	eristi	c bond	resistar	ice in un	cracked	concre	ete C2	0/25									
Hammer-	drillir	ng with s	standard	drill bit o	<u>or hollow d</u>	rill bit	<u>(dry or</u>	wet co	ncrete)	<u>)</u>							
Tem-	l:	35 °C /	/ 60 °C			18	18	18	17	17	16	15	15	15	14		
perature range	II:	50 °C /	/ 72 °C	$^{-}$ $\tau_{\rm Rk,ucr}$	[N/mm ²]	18	17	17	16	16	15	14	14	14	13		
Hammer-	drilliı	ng with s	standard	drill bit o	r hollow d	rill bit	(water	filled h	ole <u>)</u>								
Tem-	l:	35 °C /	/ 60 °C			16	16	15	13	13	11	11	10	10	9		
perature range	II:	50 °C /	/ 72 °C	$\tau_{\rm Rk,ucr}$	[N/mm ²]	15	14	14	13	12	11	10	10	9	9		
	drilli	ng (dry	or wet co	oncrete a	s well as v	water f	illed ho	ble)				1	1	<u> </u>			
Tem-				[N1/mm2]	16	15	13	12	12	10	10	10	9	9			
perature range	II:	50 °C /	/ 72 °C	$^{-}$ $\tau_{\rm Rk,ucr}$	[N/mm ²]	15	14	12	11	11	10	9	9	8	8		
Installatio	on fa	actors			1			1				1		<u> </u>			
Dry or we	et cor	ncrete								1	,0						
Water fille	ed ho	ole		- γinst	[-]	1,4											
Cracked	Cracked concrete																
Characte	eristi	c bond	resistan	ice in cra	acked co	ncrete	C20/2	5									
Hammer-	drillir	ng with s	standard	drill bit o	r hollow d	rill bit	(dry or	wet co	ncrete	<u>)</u>							
Tem- perature	1:	35 °C /	/ 60 °C		[N/mm ²]	7,5	7,5	9	8,5	8,5	8,5	8,5	8,5	8,5	8,5		
range	II:	50 °C /	/ 72 °C	- τ _{Rk,cr}	[N/mm ²]	7,5	7,5	9	8,5	8,5	8,5	8,5	8,5	8,5	8,5		
Diamond	- dril	lling (dry	or wet o	concrete)			1	1	1		1	1		1			
Tem-	l:	35 °C /	/ 60 °C		[N] //ac /22	7	7	7	7	6	6	7	7	7	7		
perature range	11:	50 °C /	/ 72 °C	$^ au_{Rk,cr}$	[N/mm ²]	7	7	7	7	6	6	7	7	7	7		
Hammer-	drilliı	ng with s	standard	drill bit o	r hollow d	rill bit	and dia	amond-	drilling	(water	filled l	hole)		-			
Tem-	l:	35 °C /	/ 60 °C			6	7,5	7,5	7	6	6	6	6	6	6		
perature range	11:	50 °C /	/ 72 °C	$\tau_{Rk,cr}$	[N/mm ²]	6	7	7	7	6	6	6	6	6	6		
Installati	on fa	actors					1						1				
Dry or wet	t con	crete			r 1					1	,0						
Water fille	d ho	le		- γinst	[-]			1,2					1,4				
fischer	inje	ection s	system	FIS EM	l Plus												
Dorform												-	Δnn	ex C :	5		
Performances Characteristic values for combined pull-out and concrete failure for fischer a										ancho	or rod			ix 26/ 39			

and standard threaded rods; working life 50 years

Table C6.1:Characteristic values for combined pull-out and concrete failure for fischer
anchor rods and standard threaded rods in hammer or diamond drilled
holes: uncracked or cracked concrete: working life 100 years

			noraone		101100		, 010,			10 10	0 ,04			
Anchor r	od /	standard threa	ded rod		M8	M10	M12	M14	M16	M20	M22	M24	M27	M30
Combine	d pı	ullout and cond	rete con	e failure	-	-	-	-	-		-	-		-
Calculatio	n di	ameter	d	[mm]	8	10	12	14	16	20	22	24	27	30
Uncracke	ed co	oncrete												
Characte	risti	c bond resista	nce in un	cracked	concre	ete C20)/25							
Hammer-	drilliı	ng with standard	<u>d drill bit o</u>	<u>r hollow d</u>	rill bit ((dry or	wet co	ncrete)	<u> </u>			1		
Tem- perature	1:	35 °C / 60 °C		[N/mm ²]	18	18	18	17	17	16	15	15	15	14
range	II:	50 °C / 72 °C	$- au_{Rk,ucr}$		18	17	17	16	16	15	14	14	14	13
Diamond-	drilli	ing (dry or wet c	oncrete)			•					•			
Tem-	I:	35 °C / 60 °C		FN 17 27	16	15	13	12	12	10	10	10	9	9
perature range	11:	50 °C / 72 °C	$- au_{Rk,ucr}$	[N/mm ²]	15	14	12	11	11	10	9	9	8	8
Installatio	on fa	actors				1	1	1	1		I	1	1	
Dry or we	t cor	ncrete	γinst	[-]					1	,0				
Working I: 35 °C / 60 °C				0,75	0,75	0,75	0,75	0,75	0,75	0,75	0,75	0,75	0,75	
life 100 years	II:	50 °C / 72 °C	$\alpha_{100 \text{ years}}$	[-]	0,55	0,60	0,60	0,65	0,65	0,65	0,65	0,65	0,65	0,65
Cracked	con	crete												
Characte	risti	c bond resista	nce in cra	acked col	ncrete	C20/2	5							
Hammer-	drilliı	ng with standard	d drill bit o	r hollow d	rill bit ((dry or	wet co	ncrete)	1					
Tem-	1:	35 °C / 60 °C		[N/mm²]	7,5	7,5	9	8,5	8,5	8,5	8,5	8,5	8,5	8,5
perature range	11:	50 °C / 72 °C	$ au_{Rk,cr}$		7,5	7,5	9	8,5	8,5	8,5	8,5	8,5	8,5	8,5
Diamond	- dri	lling (dry or wet	concrete)											
Tem-	1:	35 °C / 60 °C		FN 17 27	7	7	7	7	6	6	7	7	7	7
perature range	11:	50 °C / 72 °C	$- au_{ m Rk,cr}$	[N/mm ²]	7	7	7	7	6	6	7	7	7	7
Installatio	on fa	actors				•	•							
Dry or wet	: con	crete	γinst	[-]					1	,0				
Working	1:	35 °C / 60 °C			0,60	0,85	0,80	0,65	0,65	0,65	0,65	0,65	0,65	0,65
life 100 years	II:	50 °C / 72 °C	-α100 years	[-]	0,60	0,85	0,80	0,65	0,65	0,65	0,65	0,65	0,65	0,65

¹⁾ Calculation of characteristic bond resistance in uncracked concrete $\tau_{\text{Rk},100, \text{ ucr}}$:

 $\tau_{\text{Rk,100, ucr}} = \alpha_{100 \text{ years}} \cdot \tau_{\text{Rk,ucr}}$

²⁾ Calculation of characteristic bond resistance in cracked concrete $\tau_{\text{Rk},100, \text{ cr}}$:

 $\tau_{\text{Rk,100, cr}} = \alpha_{100 \text{ years}} \cdot \tau_{\text{Rk,cr}}$

fischer injection system FIS EM Plus

Performances

Characteristic values for combined pull-out and concrete failure for fischer anchor rod and standard threaded rods; working life 100 years

Annex C 6 Appendix 27/ 39

Characteristic values for **combined pull-out** and concrete failure for **fischer internal threaded anchors RG MI** in hammer or diamond drilled holes; Table C7.1: uncracked or cracked concrete; working life 50 years

			-				
Internal threaded anchor RG	МІ		M8	M10	M12	M16	M20
Combined pullout and concre	ete cone	e failure	-		-	-	-
Calculation diameter	d	[mm]	12	16	18	22	28
Uncracked concrete							
Characteristic bond resistance	ce in un	cracked	concrete C2	0/25			
Hammer-drilling with standard of	drill bit o	r hollow d	<u>lrill bit (dry or</u>	wet concrete	<u>)</u>	Γ	Γ
Tem- I: 35 °C / 60 °C	π	[N/mm²]	15	14	14	13	12
range II: 50 °C / 72 °C	$ au_{Rk,ucr}$	[14/11111]	14	13	13	12	11
Hammer-drilling with standard of	drill bit o	r hollow d	Irill bit (water	<u>filled hole)</u>			
Tem- I: 35 °C / 60 °C	_	[N/mm²]	14	12	12	11	10
range II: 50 °C / 72 °C	$ au_{Rk,ucr}$		13	12	11	10	9
Diamond-drilling (dry or wet cor	ncrete as	s well as v	water filled ho	<u>ole)</u>	•		
Tem- I: 35 °C / 60 °C		[] [] [] [] [] [] [] [] [] [] [] [] [] [13	12	11	10	9
perature II: 50 °C / 72 °C	$ au_{Rk,ucr}$	[N/mm ²]	12	11	10	9	8
Installation factors							
Dry or wet concrete		r 1			1,0		
Water filled hole	γinst	[-]			1,4		
Cracked concrete							
Characteristic bond resistand	ce in cra	icked co	ncrete C20/2	5			
Hammer-drilling with standard of	drill bit o	r hollow d	Irill bit and dia	amond-drilling	<u>(dry or wet c</u>	<u>oncrete)</u>	
Tem- perature I: 35 °C / 60 °C	-	[N/mm²]	7	6	6	7	7
range II: 50 °C / 72 °C	$ au_{Rk,cr}$	[IN/IIIII]	7	6	6	7	7
Hammer-drilling with standard of	drill bit o	r hollow d	Irill bit and dia	amond-drilling	(water filled I	<u>nole)</u>	
Tem- I: 35 °C / 60 °C	_	[N]/mama2]	7	6,5	6	6	6
perature II: 50 °C / 72 °C	$ au_{Rk,cr}$	[N/mm ²]	7	6	6	6	6
Installation factors				1	•		
Dry or wet concrete		r 1			1,0		
Water filled hole	γinst	[-]		1,2		1	,4
fischer injection system F	IS EM	Plus					
Performances						Ann	ex C 7

Characteristic values for combined pull-out and concrete failure for fischer internal threaded anchors RG MI; working life 50 years

Appendix 28/39

Table C8.1:Characteristic values for combined pull-out and concrete failure for fischer
internal threaded anchors RG MI in hammer or diamond drilled holes;
uncracked or cracked concrete; working life 100 years

uncrach		acheu	concrete,		e ioo years	5	
Internal threaded anchor R	g MI		M8	M10	M12	M16	M20
Combined pullout and cond	rete con	e failure		•			2
Calculation diameter	d	[mm]	12	16	18	22	28
Uncracked concrete							
Characteristic bond resista	nce in un	cracked of	concrete C2	0/25			
Hammer-drilling with standard	<u>d drill bit o</u>	<u>r hollow d</u>	<u>rill bit (dry or</u>	wet concrete)	<u> </u>		
Tem- I: 35 °C / 60 °C		[N]/ma.ma2]	15	14	14	13	12
perature range II: 50 °C / 72 °C	$- au_{Rk,ucr}$	[N/mm ²]	14	13	13	12	11
<u>Diamond-drilling (dry or wet c</u>	oncrete)						
Tem- I: 35 °C / 60 °C		EN 1 (13	12	11	10	9
perature II: 50 °C / 72 °C	$^ au_{Rk,ucr}$	[N/mm ²]	12	11	10	9	8
Installation factors							
Dry or wet concrete	γinst	[-]			1,0		
Working I: 35 °C / 60 °C			0,75	0,75	0,75	0,75	0,75
life 100 years II: 50 °C / 72 °C	—α _{100 years}	[-]	0,55	0,60	0,60	0,65	0,65
Cracked concrete							-
Characteristic bond resista	nce in cra	acked cor	ncrete C20/2	5			
Hammer-drilling with standard	d drill bit o	<u>r hollow d</u>	rill bit and dia	amond-drilling	(dry or wet c	oncrete)	
Tem- I: 35 °C / 60 °C		[]] /	7	6	6	7	7
perature range II: 50 °C / 72 °C	$- au_{Rk,cr}$	[N/mm ²]	7	6	6	7	7
Installation factors							
Dry or wet concrete	γinst	[-]			1,0		
Working I: 35 °C / 60 °C	~		0,60	0,85	0,80	0,65	0,65
life	—α100 years	[-]	0,60	0,85	0,80	0,65	0,65

^1) Calculation of characteristic bond resistance in uncracked concrete $\tau_{\text{Rk},100,\,\text{ucr}}$:

 $\tau_{\text{Rk,100, ucr}} = \alpha_{100 \text{ years}} \cdot \tau_{\text{Rk,ucr}}$

$^{2)}$ Calculation of characteristic bond resistance in cracked concrete $\tau_{\text{Rk},100,\,\text{cr}}$:

 $\tau_{\text{Rk},100, \text{ cr}} = \alpha_{100 \text{ years}} \cdot \tau_{\text{Rk},\text{cr}}$

fischer injection system FIS EM Plus

Performances

Characteristic values for combined pull-out and concrete failure for fischer internal threaded anchors RG MI; working life 100 years

Annex C 8 Appendix 29/ 39

Table C9.1:	reinforci	Characteristic values for combined pull-out and co reinforcing bars in hammer or diamond drilled hole cracked concrete; working life 50 years of the bar ϕ 8 10 12 14 16 18 20 22 2																		
Nominal diamete	er of the bar		ф	8	10	12	14	16	18	20	22	24	25	26	28	30	32	34	36	40
Combined pullo	ut and concr	ete con	e failure												-					
Calculation diame	eter	d	[mm]	8	10	12	14	16	18	20	22	24	25	26	28	30	32	34	36	40
Uncracked conc																				
Characteristic b								-												
Hammer-drilling v		drill bit o	<u>r hollow c</u>	<u>drill b</u>			or we											1		
Tem- I: 35 perature —	5 °C / 60 °C	π	[N/mm ²]	16	15	15	14	14	13	13	13	12	12	12	12	12	12	11	11	11
range II: 50	°C / 72 °C	$ au_{Rk,ucr}$		15	14	14	13	13	12	12	12	12	11	11	11	11	11	11	10	10
Hammer-drilling v	with standard	drill bit o	r hollow c	irill b	oit (v	/ate	r fill	ed h	ole)											
	5 °C / 60 °C		FN 1 / 23	16	16	14	13	12	12	11	11	10	10	10	10	9	9	9	8	8
perature — range II: 50	°C / 72 °C	$ au_{Rk,ucr}$	[N/mm ²]	15	14	13	12	12	11	11	10	10	9	9	9	9	8	8	8	8
Diamond-drilling ((dry or wet co	ncrete a	s well as v	wate	r fill	ed ł	nole)												
	°C / 60 °C		_	16	15	13	12	12	11	10	10	10	9	9	9	9	8	8	8	7
perature range II: 50	°C / 72 °C	$ au_{Rk,ucr}$	[N/mm ²]	15	14	12	11	11	10	10	9	9	9	8	8	8	8	7	7	7
Installation facto	ors				I										1					
Dry or wet concre	ete											1,0								
Water filled hole		γinst	[-]									1,4								
Cracked concret	te																			
Characteristic b	ond resistan	ce in cra	acked co	ncre	te C	20/	25													
Hammer-drilling v	with standard	drill bit o	r hollow c	<u>drill b</u>	<u>it (d</u>	lry o	or we	et co	ncre	<u>ete)</u>										
	°C / 60 °C		[N] / may may 2]	7	7	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8
perature II: 50	°C / 72 °C	$ au_{Rk,cr}$	[N/mm ²]	7	7	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8
Diamond-drilling	(dry or wet co	ncrete)	1	<u> </u>	I										1					
Tem- I: 35	5 °C / 60 °C			7	7	7	7	6	6	6	7	7	7	7	7	7	5	5	5	5
perature range II: 50	°C / 72 °C	$ au_{Rk,cr}$	[N/mm ²]	7	7	7	7	6	6	6	7	7	7	7	7	7	5	5	5	5
Hammer-drilling v	with standard	drill bit o	r hollow c	drill b	it ar	nd d	iam	ond	-drill	ing	(wat	er fi	lled	hole	∟ ∋)					
-	5 °C / 60 °C				7,5				6	6	6	6	6	6	6	6	5	5	5	5
perature range II: 50	°C / 72 °C	$ au_{Rk,cr}$	[N/mm ²]		6,5		6	6	6	6	6	6	6	6	6	6	5	5	5	5
Installation facto					-,-	-,-	-	_	-		-	_	-	_	_	_		-	_	<u> </u>
Dry or wet concre												1,0								
Water filled hole		γinst	[-]			1	,2					,			1,4					
fischer injection Performances	-																	x C	-	
Characteristic va working life 50 y		bined pu	Ill-out and	l con	cret	e fa	ilure	e for	reir	offorc	ing	bars	s;		P	Арреі	ndix :	30/ 39	J	

Table C	:10.	1:	Characte reinforc cracked	ing bar	s in han	nme	er o	r di	am	ond	dri											
Nominal	dian	neter	of the bar		φ	8	10	12	14	16	18	20	22	24	25	26	28	30	32	34	36	40
Combine	d pu	illout	and conc	rete con	e failure																	
Calculatio	-			d	[mm]	8	10	12	14	16	18	20	22	24	25	26	28	30	32	34	36	40
Uncracke	ed co	oncre	ete																			
Characte	risti	c bor	nd resistar	nce in un	cracked	con	cre	te C	20/2	25												
Hammer-	drillir	ng wit	th standard	drill bit o	r hollow c	irill k	oit (c	dry c	or we	et co	oncr	ete)										
Tem-	1:	35 °	C / 60 °C			16	15	15	14	14	13	13	13	12	12	12	12	12	12	11	11	11
perature range	11:	50 °	C / 72 °C	$^ au_{Rk,ucr}$	[N/mm ²]	15	14	14	13	13	12	12	12	12	11	11	11	11	11	11	10	10
	drilli	ng (d	ry or wet co	oncrete)																		
Tem-	1:	35 °	C / 60 °C			16	15	13	12	12	11	10	10	10	9	9	9	9	8	8	8	7
perature range	11:	50 °	C / 72 °C	$\tau_{Rk,ucr}$	[N/mm ²]	15	14	12	11	11	10	10	9	9	9	8	8	8	8	7	7	7
Installatio													•	-		-	_	-	-	-		
Dry or we			-	γinst	[-]									1,0								
Morking I: 32 °C / 60 °C 0,75																						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $																						
years II: 50 °C / 72 °C																						
Cracked	Cracked concrete Characteristic bond resistance in cracked concrete C20/25																					
Characte	risti	c bor	nd resistar	nce in cra	acked co	ncre	ete (C20/	25													
Hammer-	drillir	ng wit	th standard	drill bit o	or hollow o	drill k	oit (c	dry c	or we	et co	oncr	ete)										
Tem-	I:	35 °	C / 60 °C			7	7	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8
perature range	11:	50 °	C / 72 °C	$^ au_{Rk,cr}$	[N/mm ²]	7	7	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8
	drilli	ng (d	ry or wet co	oncrete)																		
Tem-	1:	35 °	C / 60 °C		_	7	7	7	7	6	6	6	7	7	7	7	7	7	5	5	5	5
perature range	11:	50 °	C / 72 °C	$^ au_{Rk,cr}$	[N/mm ²]	7	7	7	7	6	6	6	7	7	7	7	7	7	5	5	5	5
Installatio							-	-		_	_	_	_		_				-	_	_	
Dry or we				γinst	[-]									1,0								
<u> </u>				Tillot		8	35	80	35	35	35	35	35	_		35	35	35	35	35	35	35
Working life 100	·.	30	C / 60 °C	-α100 years	[-]	0,60	5 0,85	0,80	5 0,65	5 0,65	5 0,65	5 0,65	5 0,65	5 0,65	5 0,65	5 0,65	5 0,65	5 0,65	5 0,65	5 0,65	5 0,65	5 0,6
years	II:	50 °	C / 72 °C	·		0,60	0,85	0,80	0,65	0,65	0,65	0,65	0,65	0,65	0,65	0,65	0,65	0,65	0,65	0,65	0,65	0,65
τ _{Rk,10} 2) Calcu	years II: 50 °C / 72 °C $\begin{subarray}{c} \begin{subarray}{c} \begin{subarra}{c} \begin{subarray}{c} \begin{subarray}{c} \begin{subarray}{c} $																					
Perform	anc eristi	es c val	n system ues for con ears			l cor	ncre	te fa	ilure	e for	reir	nforc	ing	bars	5;				nex			

Table C11.1:Characteristic values for combined pull-out and concrete failure for fischer
rebar anchors FRA in hammer or diamond drilled holes; uncracked or
cracked concrete; working life 50 years

lieghar ra							
ischer re	bar anchor FRA			M12	M16	M20	M24
	d pullout and conci	ete con	e failure				
Calculatio	n diameter	d	[mm]	12	16	20	25
	d concrete						
	ristic bond resistan						
	drilling with standard	<u>drill bit o</u>	<u>r hollow d</u>	· -		1	
Tem- perature	I: 35 °C / 60 °C	$ au_{Rk,ucr}$	[N/mm ²]	15	14	13	12
range	II: 50 °C / 72 °C	CRK,ucr		14	13	12	12
Hammer-c	drilling with standard	drill bit c	<u>r hollow d</u>	rill bit (water fille	<u>d hole)</u>	-	
Tem-	l: 35 °C / 60 °C		IN 1/100 21	14	12	11	10
oerature range	II: 50 °C / 72 °C	$ au_{Rk,ucr}$	[N/mm ²]	13	12	11	9
	drilling (dry or wet co	<u>ncrete a</u>	<u>s well as v</u>	water filled hole)	1	1	1
Tem-	I: 35 °C / 60 °C			13	12	10	9
perature range	II: 50 °C / 72 °C	$ au_{Rk,ucr}$	[N/mm ²]	12	11	10	9
•	n factors		<u> </u>	12			
Dry or wet					1	,0	
Water fille		γinst	[-]			,0 ,4	
Cracked o						,.	
	ristic bond resistan	ce in cr	acked cor	crete C20/25			
	drilling with standard				nd-drilling (dry c	or wet concrete)	
Tem-	I: 35 °C / 60 °C			8	8	8	8
perature	II: 50 °C / 72 °C	$ au_{Rk,cr}$	[N/mm ²]	8	8	8	8
range Hammer-c	drilling with standard	drill bit a				_	
Tem-	I: 35 °C / 60 °C			7	6		6
oerature		$ au_{Rk,cr}$	[N/mm ²]				
range	II: 50 °C / 72 °C			7	6	6	6
	on factors		гг				
Dry or wet		- γinst	[-]			,0	
Water fille	d hole		''	1,	<i>•</i>	1	1,4

anchors FRA; working life 50 years

Table C12.1:Characteristic values for combined pull-out and concrete failure for fischer
rebar anchors FRA in hammer or diamond drilled holes; uncracked or
cracked concrete; working life 100 years

	Cracked	concre	ele, won	king life 100	years		
fischer re	ebar anchor FRA			M12	M16	M20	M24
Combine	ed pullout and conc	rete con	e failure			-	
Calculatio	on diameter	d	[mm]	12	16	20	25
Uncracke	ed concrete						
Characte	ristic bond resista	nce in un	cracked	concrete C20/25	5		
Hammer-	drilling with standard	d drill bit o	<u>r hollow d</u>	rill bit (dry or wet	t concrete)	1	1
Tem- perature	I: 35 °C / 60 °C		[N/mm²]	15	14	13	12
range	II: 50 °C / 72 °C	$- au_{Rk,ucr}$	[[N/11111-]	14	13	12	12
Diamond-	-drilling (dry or wet c	oncrete)					
Tem-	I: 35 °C / 60 °C		FN 1 (13	12	10	9
perature range	II: 50 °C / 72 °C	$- au_{Rk,ucr}$	[N/mm ²]	12	11	10	9
Installati	on factors				I	1	I
Dry or we	et concrete	γinst	[-]		1	,0	
Working	I: 35 °C / 60 °C		FN 1 / 23	0,75	0,75	0,75	0,75
life 100 years	II: 50 °C / 72 °C	-α _{100 years}	[N/mm ²]	0,60	0,65	0,65	0,65
Cracked	concrete						
Characte	eristic bond resista	nce in cra	acked co	ncrete C20/25			
<u>Hammer-</u>	drilling with standard	<u>d drill bit o</u>	<u>r hollow d</u>	rill bit and diamo	nd-drilling (dry c	or wet concrete)	
Tem-	l: 35 °C / 60 °C		[N] / ma ma 2]	8	8	8	8
perature range	II: 50 °C / 72 °C	$- au_{Rk,cr}$	[N/mm ²]	8	8	8	8
Installati	on factors						
Dry or we	et concrete	γinst	[-]		1	,0	
Working life 100	I: 35 °C / 60 °C	_ ~	F 1	0,80	0,65	0,65	0,65
years	II: 50 °C / 72 °C	$-\alpha_{100}$ years	[-]	0,80	0,65	0,65	0,65

¹⁾ Calculation of characteristic bond resistance in uncracked concrete $\tau_{\text{Rk},100, \text{ ucr}}$:

 $\tau_{\text{Rk,100, ucr}} = \alpha_{100 \text{ years}} \cdot \tau_{\text{Rk,ucr}}$

$^{2)}$ Calculation of characteristic bond resistance in cracked concrete $\tau_{\text{Rk},100,\,\text{cr}}$:

 $\tau_{\text{Rk,100, cr}} = \alpha_{100 \text{ years}} \cdot \tau_{\text{Rk,cr}}$

fischer injection system FIS EM Plus

Performances

Characteristic values for pull-out and concrete failure for fischer rebar anchors FRA; working life 100 years

Annex C 12 Appendix 33/ 39

Anchor re	bd	M8	M10	M12	M14	M16	M20	M22	M24	M27	M30				
Displacer	ment-Factors	for tensi	on load ¹)											
Uncracke	d or cracked	concrete	; Tempe	rature ra	nge I, II										
δN0-Factor	mm/(N/mm²)]-	0,07	0,08	0,09	0,09	0,10	0,11	0,11	0,12	0,12	0,13				
δ _{N∞-Factor} Ι	_mm/(N/mm-)]	0,11	0,12	0,13	0,14	0,15	0,16	0,17	0,18	0,19	0,19				
Displacer	Displacement-Factors for shear load ²⁾														
Uncracke	d or cracked	concrete	; Tempe	rature ra	nge I, II										
δvo-Factor	[mm/kN]]	0,18	0,15	0,12	0,10	0,09	0,07	0,07	0,06	0,05	0,05				
δv∞-Factor	[mm/kN]	0,27	0,22	0,18	0,16	0,14	0,11	0,10	0,09	0,08	0,07				
¹⁾ Calcul	ation of effectiv	/e displa	cement:		2)	Calculatio	on of effe	ctive disp	lacement	t:					
δ _{N0} = δ	ο N0-Factor · τ _{Ed}					$\delta v_0 = \delta v_0$	$_{\sf Factor} \cdot {\sf V}_{\sf Ec}$	l							
$\delta_{N^{\infty}} = \delta$	δN∞-Factor [·] τEd					$\delta_{V^{\infty}} = \delta_{V^{\infty}}$	-Factor $\cdot V_{E}$	d							
(τ _{Ed} : D	esign value of	the appl	ied tensile	e stress)		(V _{Ed} : Des	sign value	of the a	pplied she	ear force)					

Table C13.2: Displacements for fischer internal threaded anchors RG MI

nternal anchor F	threaded RG MI	M8	M10	M12	M16	M20
isplace	ment-Factors	for tension load ¹		• •		
Incrack	ed or cracked	concrete; Tempe	rature range I, II			
N0-Factor	[mm/(N/mm²)]	0,09	0,10	0,10	0,11	0,13
N∞-Factor	[[[[[[[]]]]	0,13	0,15	0,16	0,17	0,19
Displace	ement-Factors	for shear load ²⁾				
Incrack	ed or cracked	concrete; Tempe	rature range I, II			
V0-Factor	[mm/kN]	0,12	0,09	0,08	0,07	0,05
V∞-Factor		0,18	0,14	0,12	0,10	0,08
¹⁾ Calcu	lation of effectiv	ve displacement:		²⁾ Calculation of e	ffective displacem	ent:
δΝ0 =	δ N0-Factor \cdot TEd			δ V0 = δ V0-Factor ·	V _{Ed}	
δ _{N∞} =	δ _{N∞-Factor} · τ _{Ed}			$\delta_{V\infty} = \delta_{V\infty\text{-Factor}}$.	V _{Ed}	
(τ _{Ed} :	Design value of	the applied tensile	e stress)	(V _{Ed} : Design va	lue of the applied	shear force)

Displacements for anchor rods and fischer internal threaded anchors RG MI

Annex C 13 Appendix 34/39

Table (Table C14.1: Displacements for reinforcing bars																		
Nominal of the ba	diameter ar	φ	8	10	12	14	16	18	20	22	24	25	26	28	30	32	34	36	40
Displace	Displacement-Factors for tension load ¹⁾																		
Uncracked or cracked concrete; Temperature range I, II δ _{N0-Factor} [mm/(N/mm ²)] 0,07 0,08 0,09 0,09 0,10 0,10 0,11 0,11 0,12 0,12 0,12 0,13 0,13 0,13 0,14 0,14 0,15 0,15 0,16 0,17 0,18 0,18 0,18 0,18 0,19 0,10 0,20 0,20 0,21 0,22																			
δ N0-Factor	[mm/(NI/mm)	2)10,	,07	0,08	0,09	0,09	0,10	0,10	0,11	0,11	0,12	0,12	0,12	0,13	0,13	0,13	0,14	0,14	0,15
δN∞-Factor	-Factor [mm/(N/mm ²)] 0,11 0,12 0,13 0,14 0,15 0,16 0,16 0,17 0,18 0,18 0,18 0,19 0,19 0,20 0,20 0,21 0,22																		
Displacement-Factors for shear load ²⁾																			
Uncracked or cracked concrete; Temperature range I, II																			
δ V0-Factor	[mm/kN]]	0,	,18	0,15	0,12	0,10	0,09	0,08	0,07	0,07	0,06	0,06	0,06	0,05	0,05	0,05	0,04	0,04	0,04
δv∞-Factor	[mm/kN]	0,	,27	0,22	0,18	0,16	0,14	0,12	0,11	0,10	0,09	0,09	0,08	0,08	0,07	0,07	0,06	0,06	0,05
¹⁾ Calcu	lation of effe	ctive	e dis	place	ement	:			2) C	Calcul	ation	of effe	ective	displ	acem	nent:			
δ _{N0} =	$\delta_{\text{N0-Factor}} \cdot \tau_{\text{Ed}}$								8	δvo = δ	SV0-Fact	tor · Ve	Ed						
δ _{N∞} =	δN∞-Factor · τε	d							3	Sv∞ = 6	δv∞-Fac	$tor \cdot V$	Ed						
(τ _{Ed} :	Design value	of th	he a	pplie	d ten	sile st	ress)		(V _{Ed} : [Desigi	n valu	e of t	he ap	plied	shea	r force	e)	

Table C14.2: Displacements for fischer rebar anchors FRA

fischer r FRA	ebar anchor	M12	M16	M20	M24							
Displace	ment-Factors	for tension load ¹⁾										
Uncrack	ed or cracked	concrete; Temperatu	re range I, II									
$\delta_{ m N0-Factor}$	[mm/(N/mm²)]	0,09	0,10	0,11	0,12							
δN∞-Factor	[[[[[[[[]]]]	0,13	0,15	0,16	0,18							
Displacement-Factors for shear load ²⁾												
Uncracked or cracked concrete; Temperature range I, II												
δ V0-Factor	[mm/kN]	0,12	0,09	0,07	0,06							
δv∞-Factor	[IIIII/KN]	0,18	0,14	0,11	0,09							
¹⁾ Calcu	lation of effectiv	ve displacement:	²⁾ Calcu	lation of effective disp	lacement:							
δ _{N0} =	$\delta_{\text{N0-Factor}}$ ' τ_{Ed}		$\delta_{V0} =$	$\delta_{V0-Factor} \cdot V_{Ed}$								
δ _{N∞} =	$\delta_{N\infty\text{-}Factor}\cdot\tau_{Ed}$		$\delta_{V\infty} =$	δv∞-Factor · V _{Ed}								
$(\tau_{Ed}$: Design value of the applied tensile stress) (V _{Ed} : Design value of the applied shear force)												

fischer injection system FIS EM Plus

Performance

Displacements for reinforcing bars and fischer rebar anchors FRA

Table	anchor ro	ods an	id st	and	ard th	reade						fische	er
Anchor	performar rod / standard thread		lego	ory C	1 or C	2 M12	M14	M16	M20	M22	M24	M27	M30
	capacity under tension		eto	ol fai			10114	IIIIO	11120		1012-4		11100
	anchor rods and stan					formar	nce cat	eaory ((1 ²)				
	anchor rous and stan		5.8		29(27)	43	58	79	123	152	177	230	281
stic e	Steel zinc plated		8.8		. ,	68	92	126	125	243	282	368	449
naracteristi resistance N _{Rk,s,c1}		Property class	50	FL-NIT	47(43)	43							
arac sist N _{Rk} ,		cla	-	[kN]	29		58	79	123	152	177	230	281
Characteristic resistance N _{Rk,s,C1}	high corrosion resistant steel HCR	<u>n</u>	70		41	59	81	110	172	212	247	322	393
			80		47	68	92	126	196	243	282	368	449
fischer	anchor rods and stan	dard th		ed ro						4)		4	
e	Steel zinc plated		5.8		_4)	39	_4)	72	108	_4)	177	_4)	_4)
acteris istance IRk,s,c2	·	ss	8.8		_4)	61	_4) _4)	116	173	_4)	282	_4) _4)	_4) _4)
naracteristi esistance N _{Rk,s,c2}	Stainless steel R and	Property class	50	[-]	_4) _4)	39	_4)	72	108	_4) _4)	177	4)	4)
Characteristic resistance N _{Rk,s,C2}	high corrosion resistant steel HCR	L U	70 80		4)	53 61	_4)	101 116	152 173	4)	247 282	4)	4)
	-			failu					175	,	202	,	,
	capacity under shear					but lev	er arm [.]						
fischer a	anchor rods, performa	ance ca		bry C		05	24	47	74	01	400	400	400
e stic	Steel zinc plated		5.8		17(16)	25	34	47	74	91	106	138	168
ance ance		ss	8.8		23(21)	34	46	63	98	122	141	184	225
Characteristic resistance V _{Rks,C1}	Stainless steel R and	Property class	50	[kN]	15	21	29	39	61	76	89	115	141
Cha	high corrosion	<u>م</u>	70		20	30	40	55	86	107	124	161	197
	resistant steel HCR		80		23	34	46	63	98	122	141	184	225
Standar	d threaded rods, perf	ormano		tego				1					1
n ti	Steel zinc plated		5.8		12(11)	17	24	33	52	64	74	97	118
haracterist resistance V _{Rk,s,c1}		Property class	8.8		16(14)	24	32	44	69	85	99	129	158
aracteris esistance V _{Rk,s,C1}	Stainless steel R and	ropert class	50	[kN]	11	15	20	27	43	53	62	81	99
Characteristic resistance V _{Rk,s,C1}	high corrosion resistant steel HCR	L 0-	70		14	21	28	39	60	75	87	113	138
			80		16	24	32	44	69	85	99	129	158
	anchor rods and stan	aard th		ea ro	· · ·			<u> </u>		(1)		(1)	(1)
stic e	Steel zinc plated		5.8		_4) _4)	14	_4) _4)	27	43	_4) _4)	62	_4) _4)	_4) _4)
racteris sistano ^{(Rk,s,C2}		roperty class	8.8 50	г 1	_4)	22	_4)	44	69 43	_4)	99 62	_4)	_4)
Characteristic resistance V _{Rk,s,C2}	Stainless steel R and high corrosion	Property class	<u> </u>	[-]	4)	14 20	4)	27 39	43 60	4)	62 87	4)	4)
Ché Ché	resistant steel HCR	"	80		4)	20	4)	44	69	4)	99	4)	4)
Factor fo	or the annular gap	α _{gap}	00	[-]		22			,5 (1,0)		- 33	l = '	_ /
¹⁾ Parti for fi ²⁾ Valu stan ³⁾ Valu attac	al factors for performand scher anchor rods FIS A es in brackets are valid f dard threaded rods acco es in brackets are valid f chment. It is necessary to erformance assessed	ce categ / RGM or unde rding to or filled	the fa rsize EN I annu	C1 or (actor f d thre SO 10 llar ga	for steel aded roo 0684:200 aps betw	ductility ds with 04+AC: een the	is 1,0 smaller 2009. anchor	stress a ⁻ rod and	rea A _s f I the thr	or hot d			
Perfor Charac	r injection system F mances steristic values for steel andard threaded rods u	failure	unde	er tens						ds		iex C dix 36/ 39	

Table C16.1: Characteristic values for steel failure under tension / shear load for reinforcing bars (B500B) under seismic action performance category C1

Nominal diameter of the bar		φ	10	12	14	16	18	20	22	24	25	26	28	30	32
Bearing capacity under tension	load, steel	failu	re ¹⁾												
Reinforcing bar B500B acc. to D)IN 488-2:20	0-90	8, pe	erforr	nanc	e ca	tegoi	y C1							
Characteristic resistance	NRk,s,C1	[kN]	44	63	85	111	140	173	209	249	270	292	339	389	443
Bearing capacity under shear lo	ad, steel fa	ilure	with	out l	ever	arm	1)								
Reinforcing bar B500B acc. to D)IN 488-2:20	009-0	8, pe	rforr	nanc	e ca	tegoi	y C1							
Characteristic resistance	V _{Rk,s,C1}	[kN]	15	22	30	39	49	61	74	88	95	102	119	137	155

¹⁾ Partial factors for performance category C1 see table C16.2

Table C16.2: Partial factors for fischer anchor rods, standard threaded rods and reinforcing bars (B500B) under seismic action performance category C1 or C2

Anch	or rod / standard thre	aded rod			M10		/12	M14	М	16	M20	M	22	M24	M2	7	M30
	inal diameter of the ba			φ	10	12	14	16	18	20	22	24	25		28	30	32
Tens	ion load, steel failure ¹)															
7	Staal zina platad		5.8								1,50						
γ _{Ms,1}	Steel zinc plated	, ⊊	8.8								1,50						
ctor	Stainless steel R and	Property class	50								2,86						
al fa	high corrosion	Pre	70	[-]						1,5	0 ²⁾ / 1	,87					
Partial factor γ _{Ms,N}	resistant steel HCR		80								1,60						
	Reinforcing bar	B	500B								1,40						
Shea	r load, steel failure ¹⁾																
>	Staal zina platad		5.8								1,25						
γ _{Ms} ,	Steel zinc plated	, t	8.8								1,25						
ctor	Stainless steel R and	Property class	50								2,38						
al fa	high corrosion	E O	70	[-]						1,2	25 ²⁾ / 1	,56					
Partial factor γ _{Ms,ν}	resistant steel HCR		80								1,33						
	Reinforcing bar	B	500B								1,50						

¹⁾ In absence of other national regulations

²⁾ Only admissible for high corrosion resistant steel HCR, with $f_{yk} / f_{uk} \ge 0.8$ and $A_5 > 12 \%$ (e.g. fischer anchor rods)

fischer injection system FIS EM Plus

Performances

Characteristic values for steel failure under tension/shear load for reinforcing bars under seismic action (performance category C1); partial factors (perform. category C1 / C2)

Annex C 16 Appendix 37/ 39 Table C17.1:Characteristic values for combined pull-out and concrete failure for fischer
anchor rods and standard threaded rods in hammer drilled holes under
seismic action performance category C1; working life 50 and 100 years

		301311110 0		ononna				• • • •							,		
		standard thread			M10		112	M14	_	16	M20	M	22	M24	M2	27 I	M30
		c bond resistan															
Hammer-	drill	ing with standa	r <mark>d drill k</mark>	oit or holl	ow dı	rill bi	t (dr	y or v	vet c	oncr	ete)						
Tem-	I:	35 °C / 60 °C	_	[N]/m= 21	7,0	7	7,0	6,7	6	,0	5,7	6,	,7	6,7	6,	7	6,7
perature range	II:	50 °C / 72 °C	$ au_{Rk,C1}$	[N/mm ²]	7,0	7	7,0	6,7	5	,7	5,7	6,	,7	6,7	6,	7	6,7
Hammer-	drill	ing with standa	r <mark>d dr</mark> ill k	oit or holl	ow dı	rill bi	it (wa	iter fi	lled I	hole)							
Tem-	I:	35 °C / 60 °C		IN 1/ 21	7,5	7	7,5	6,5	5	,7	5,7	5,	,7	5,7	5,	7	5,7
perature range	II:	50 °C / 72 °C	$ au_{Rk,C1}$	[N/mm ²]	6,8	6	6,8	6,5	5	,7	5,7	5,	,7	5,7	5,	7	5,7
Installatio	on fa	actors															
Dry or we	t cor	ncrete		r 1							1,0						
Water fille	ed ho	ole	γinst	[-]			1,2	1)						1,4 ¹⁾			
¹⁾ Not p	berm	itted in combinat	ion with	working lit	fe 100) yea	rs										
Table C	;17.	2: Characte reinforci category	ng bar	s in harr	nmer	drill	ed h	oles	und							ance	•
Nominal	dian	neter of the bar		φ	10	12	14	16	18	20	22	24	25	26	28	30	32
Characte	risti	c bond resistan	ce, com	bined pu	llout	and o	conc	rete o	one	failu	re						
Hammer-	drill	ing with standa	r <mark>d drill k</mark>	it or holl	ow di	rill bi	t (dr	y or v	et c	oncr	ete)						
Tem-	1:	35 °C / 60 °C			7,0	7,0	6,7	5,7	5,7	5,7	6,7	6,7	6,7	6,7	6,7	6,7	4,8
perature - range	II:	50 °C / 72 °C	$ au_{Rk,C1}$	[N/mm ²]	7,0	7,0	6,7	5,7	5,7	5,7	6,7	6,7	6,7	6,7	6,7	6,7	4,8
Hammer-	drill	ing with standa	r <mark>d drill k</mark>	it or holl	ow di	rill bi	t (wa	ter fi	lled I	nole)							
Tem-	1:	35 °C / 60 °C			7,5	6,5	6,5	5,7	5,7	5,7	5,7	5,7	5,7	5,7	5,7	5,7	4,8
perature - range	11:	50 °C / 72 °C	$ au_{Rk,C1}$	[N/mm ²]	6,5	6,5	5,8	5,8	5,7	5,7	5,7	5,7	5,7	5,7	5,7	5,7	4,8
Installatio	on fa	actors															
Dry or we	t cor	ncrete									1,0						
Water fille	ed ho	ole	γinst	[-]			1,2 ¹⁾)					1,	4 ¹⁾			
¹⁾ Not p	berm	itted in combinat	ion with	working li	fe 100) yea	rs										
fischer	inje	ection system I	IS EN	Plus													
	eristi	es ic values for com nchor rods, stand												Anr Apper		C 17 39	,

Table C18.1:Characteristic values for combined pull-out and concrete failure for fischer
anchor rods and standard threaded rods in hammer drilled holes under
seismic action performance category C2; working life 50 and 100 years

Hammer-drillin Tem- range I: 3 perature range II: 5 Hammer-drillin Tem- range II: 5 Installation fac Dry or wet conce Water filled hole 1) Not permitted Displacement-f δN,C2 (DLS)-Factor δN,C2 (DLS)-Factor δV,C2 (DLS)-Factor 1) Calculation c δN,C2 (DLS) = δ δN,C2 (DLS) = δ	ng with standar 35 °C / 60 °C 50 °C / 72 °C ng with standar 35 °C / 60 °C 50 °C / 72 °C 50 °C / 72 °C 50 °C / 72 °C 50 °	rd drill k τ _{Rk,C2} rd drill k τ _{Rk,C2} γinst with wo sion loa [mm/ ear load	pit or holl [N/mm ²] pit or holl [N/mm ²] [-] rking life 1 ad ¹⁾ '(N/mm ²)]	ow drill bit (dry 3,5 3,3 ow drill bit (wa 3,5 3,3 3,3 1 00 years 0,09 0,15	5,8		3,1 2,9 3,1 2,9 4 ¹⁾ 0,12 0,18
Tem- perature range I: 3 perature range II: 5 Hammer-drillin II: 5 perature range II: 5 Installation fact II: 5 Insplacement-factor II: 5 Insplacement-factor	35 °C / 60 °C 50 °C / 72 °C ng with standar 35 °C / 60 °C 50 °C / 72 °C 50 °C / 72 °C Storete e in combination Factors for ter	T _{Rk,C2} rd drill k T _{Rk,C2} γinst with wo sion los [mm/ ear load	[N/mm ²] pit or holl [N/mm ²] [-] rking life 1 ad¹⁾ '(N/mm ²)]	3,5 3,3 pw drill bit (wa 3,5 3,3 100 years 0,09 0,15	5,8 5,5 ter filled hole) 5,8 5,5 1,2 ¹⁾	5,0 4,7 5,0 4,7 ,0 1,4	2,9 3,1 2,9 4 ¹⁾
perature II: 5 Hammer-drillin Tem- I: 3 perature II: 5 Installation fac: Dry or wet concr Water filled hole 1) Not permitted Displacement-I δN,C2 (ULS)-Factor δV,C2 (DLS)-Factor δV,C2 (ULS)-Factor 1) Calculation c δN,C2 (ULS) = δ δN,C2 (ULS) = δ	50 °C / 72 °C ng with standar 35 °C / 60 °C 50 °C / 72 °C ctors crete e in combination Factors for ter	rd drill k τ _{Rk,C2} γ _{inst} with wo sion log [mm/ ear load	pit or holl [N/mm ²] [-] urking life 1 ad ¹⁾ (N/mm ²)]	3,3 ow drill bit (wa 3,5 3,3 1 00 years 0,09 0,15	5,5 ter filled hole) 5,8 5,5 1 ,2 ¹⁾	4,7 5,0 4,7 ,0 0,11	2,9 3,1 2,9 4 ¹⁾
range II: 5 Hammer-drillin Tem- I: 3 perature II: 5 Installation fac: Dry or wet concr Water filled hole 1) Not permitted Displacement-I $\delta_{N,C2}$ (DLS)-Factor $\delta_{V,C2}$ (DLS)-Factor $\delta_{V,C2}$ (DLS)-Factor $\delta_{V,C2}$ (DLS)-Factor $\delta_{V,C2}$ (ULS)-Factor $\delta_{V,C2}$ (ULS)-Factor $\delta_{N,C2}$ (ULS)-Factor $\delta_{N,C2}$ (ULS)-Factor $\delta_{N,C2}$ (ULS)-Factor $\delta_{N,C2}$ (ULS) = δ $\delta_{N,C2}$ (ULS) = δ	ng with standar 35 °C / 60 °C 50 °C / 72 °C ctors crete e i in combination Factors for ter	rd drill k τ _{Rk,C2} γ _{inst} with wo sion log [mm/ ear load	pit or holl [N/mm ²] [-] urking life 1 ad ¹⁾ (N/mm ²)]	ow drill bit (wa 3,5 3,3 1 00 years 0,09 0,15	ter filled hole) 5,8 5,5 1 ,2 ¹⁾	5,0 4,7 ,0 1,4	3,1 2,9 4 ¹⁾ 0,12
Tem- perature range I: 3 II: 5 Installation fac Dry or wet concr Water filled hole ¹⁾ Not permitted Displacement-F $\delta N,C2$ (DLS)-Factor Displacement-F $\delta V,C2$ (DLS)-Factor $\delta V,C2$ (DLS)-Factor ¹⁾ Calculation C $\delta N,C2$ (DLS) = δ $\delta N,C2$ (DLS) = δ	35 °C / 60 °C 50 °C / 72 °C ctors crete e in combination Factors for ter	τ _{Rk,C2} γinst with wo sion los [mm/ ear load	[N/mm ²] [-] orking life 1 ad ¹⁾ ′(N/mm ²)]	3,5 3,3 1 00 years 0,09 0,15	5,8 5,5 1 ,2 ¹⁾	4,7 ,0 	2,9 4 ¹⁾ 0,12
Perature II: 5 Installation fac: Dry or wet concr Water filled hole 1) Not permitted Displacement-I δN,C2 (DLS)-Factor δV,C2 (DLS)-Factor δV,C2 (DLS)-Factor 1) Calculation c δN,C2 (DLS) = δ δN,C2 (DLS) = δ	50 °C / 72 °C etors crete e in combination Factors for ter	γ _{inst} with wo sion loa [mm/ ear load	[-] irking life 1 ad ¹⁾ ′(N/mm²)]	3,3 1 00 years 0,09 0,15	5,5 1 ,2 ¹⁾	4,7 ,0 	2,9 4 ¹⁾ 0,12
range II: 5 Installation factors Dry or wet concrete Water filled hole ¹⁾ Not permitted Displacement-F $\delta_{N,C2}$ (DLS)-Factor Displacement-F $\delta_{V,C2}$ (DLS)-Factor $\delta_{V,C2}$ (DLS)-Factor ¹⁾ Calculation C $\delta_{N,C2}$ (DLS) = δ $\delta_{N,C2}$ (ULS) = δ	etors erete in combination Factors for ter	γ _{inst} with wo sion loa [mm/ ear load	[-] irking life 1 ad ¹⁾ ′(N/mm²)]	1 00 years 0,09 0,15	1 ,2 ¹⁾ 0,10	,0 1,4 0,11	4 ¹⁾ 0,12
Dry or wet conci Water filled hole ¹⁾ Not permitted Displacement-I δN,C2 (DLS)-Factor Displacement-I δV,C2 (DLS)-Factor ¹⁾ Calculation C δN,C2 (DLS) = δ δN,C2 (ULS) = δ	erete e I in combination Factors for ter	with wo	urking life 1 ad ¹⁾ ′(N/mm²)]	00 years 0,09 0,15	,2 ¹⁾ 0,10	0,11	0,12
Water filled hole ¹⁾ Not permitted Displacement-F δN,C2 (DLS)-Factor δN,C2 (ULS)-Factor Displacement-F δV,C2 (DLS)-Factor ¹⁾ Calculation C δN,C2 (DLS) = δ δN,C2 (ULS) = δ	e I in combination Factors for ter	with wo	urking life 1 ad ¹⁾ ′(N/mm²)]	00 years 0,09 0,15	,2 ¹⁾ 0,10	0,11	0,12
 Not permitted Displacement-I δN,C2 (DLS)-Factor δN,C2 (ULS)-Factor Displacement-I δV,C2 (DLS)-Factor δV,C2 (ULS)-Factor 1) Calculation c δN,C2 (DLS) = δ δN,C2 (ULS) = δ 	in combination	with wo	urking life 1 ad ¹⁾ ′(N/mm²)]	00 years 0,09 0,15	0,10	0,11	0,12
Displacement-F $\delta_{N,C2}$ (DLS)-Factor $\delta_{N,C2}$ (ULS)-Factor Displacement-F $\delta_{V,C2}$ (DLS)-Factor $\delta_{V,C2}$ (ULS)-Factor 1) Calculation C $\delta_{N,C2}$ (DLS) = δ $\delta_{N,C2}$ (ULS) = δ	Factors for ter	ear load	ad ¹⁾ ′(N/mm²)]	0,09 0,15			
δ N,C2 (DLS)-Factor δ N,C2 (ULS)-Factor Displacement-I δ V,C2 (DLS)-Factor δ V,C2 (ULS)-Factor ¹⁾ Calculation C δ N,C2 (DLS) = δ δ N,C2 (ULS) = δ		ear load	′(N/mm²)]	0,15			
δ N,C2 (DLS)-Factor δ N,C2 (ULS)-Factor Displacement-I δ V,C2 (DLS)-Factor δ V,C2 (ULS)-Factor ¹⁾ Calculation C δ N,C2 (DLS) = δ δ N,C2 (ULS) = δ		ear load	′(N/mm²)]	0,15			
$\begin{split} \delta N, C2 & (ULS) \text{-Factor} \\ \hline \textbf{Displacement-H} \\ \delta V, C2 & (DLS) \text{-Factor} \\ \hline \delta V, C2 & (ULS) \text{-Factor} \\ \hline 1) & \textbf{Calculation c} \\ \delta N, C2 & (DLS) &= \delta \\ \delta N, C2 & (ULS) &= \delta \end{split}$	Factors for she	ear load	· /-	0,15			
Displacement-I $\delta V,C2$ (DLS)-Factor $\delta V,C2$ (ULS)-Factor ¹⁾ Calculation C $\delta N,C2$ (DLS) = δ $\delta N,C2$ (ULS) = δ	Factors for she		2)	0.40	-4		<u>_</u>
$\frac{\delta V,C2 \text{ (ULS)-Factor}}{1) \text{ Calculation c}}$ $\delta N,C2 \text{ (DLS)} = \delta$ $\delta N,C2 \text{ (ULS)} = \delta$		[m		0.40			
¹⁾ Calculation C $\delta_{N,C2 (DLS)} = \delta$ $\delta_{N,C2 (ULS)} = \delta$			m/kNI	0,18	0,10	0,07	0,06
δ N,C2 (DLS) = δ δ N,C2 (ULS) = δ			nm/kN]	0,25	0,14	0,11	0,09
$\delta_{\text{N,C2}} \text{(ULS)} = \delta$	of effective disp	lacemer	nt:	2) (Calculation of effe	ctive displaceme	nt:
	δ N,C2 (DLS)-Factor \cdot 1	Ed			δ V,C2 (DLS) = δ V,C2 (D	LS)-Factor $\cdot V_{Ed}$	
(τ _{Ed} : Design	δ N,C2 (ULS)-Factor \cdot 1	Ed			δ V,C2 (ULS) = δ V,C2 (U	$_{\text{LS})-\text{Factor}} \cdot V_{\text{Ed}}$	
(== 5	value of the ap	plied tei	nsile stres	s)	(V _{Ed} : Design value	e of the applied sl	hear force)

fischer injection system FIS EM Plus

Performances

Characteristic values for combined pull-out and concrete failure under seismic action (C2) for fischer anchor rods and standard threaded rods; working life 50 and 100 years

Annex C 18 Appendix 39/ 39