

DECLARATION OF PERFORMANCE

DoP 0194

	OP 0194 r fischer injection system FIS VL (Bonded fastener for us	e in concrete)		EN
1.	Unique identification code of the product-type:	DoP 0194		
2.	Intended use/es:	Post-installed fastening in cracked or uncracked c See appendix, especially annexes B	concrete. I1- B8	
3.	Manufacturer:	fischerwerke GmbH & Co. KG, Otto-Hahn-Straße 1	5, 79211 Denzlingen, Germany	
4.	Authorised representative:	-		
5.	System/s of AVCP:	1		
6.	European Assessment Document: European Technical Assessment: Technical Assessment Body: Notified body/ies:	EAD 330499-01-0601 ETA- 10/0352; 2020-05-13 DIBt- Deutsches Institut für Bautechnik 1343 MPA Darmstadt / 2873 TU Darmstadt		
7.	Declared performance/s:			
	Mechanical resistance and stability (BWR 1) Characteristic resistance to tension load (static and quasi-static loading):	Resistance to steel failure: Resistance to combined pull- out and concrete cone failure:	Annexes C1, C2 Annexes C3- C5 τ _{Rk,100} = NPE)
		Resistance to concrete cone failure: Edge distance to prevent splitting under load:	Annex C3 Annexes C3	
		Robustness: Maximum installation torque:	Annex C3- C5 Annexes B3, B4	
		Minimum edge distance and spacing:	Annexes B3, B4	
	Characteristic resistance to shear load (static and quasi-static loading):	Resistance to steel failure: Resistance to pry-out failure: Resistance to concrete edge failure:	Annexes C1, C2 Annex C3 Annex C3	
	Characteristic resistance and displacements for seismic performance categories C1 and C2:	Resistance to tension load, displacements, category C1:	NPD	
		Resistance to tension load, displacements, category C2:	NPD	
		Resistance to shear load, displacements, category C1:	NPD	
		Resistance to shear load, displacements, category C2:	NPD	
		Factor annular gap:	NPD	
	Displacements under short-term and long-term loading:	Displacements under short-term and long-term loading:	Annexes C6	

Hygiene, health and the environment (BWR 3) Content, emission and/or release of dangerous substances: NPA

8. <u>Appropriate Technical Documentation and/or Specific</u> – <u>Technical Documentation:</u>

The performance of the product identified above is in conformity with the set of declared performance/s. This declaration of performance is issued, in accordance with Regulation (EU) No 305/2011, under the sole responsibility of the manufacturer identified above.

Signed for and on behalf of the manufacturer by:

ppa. The MA

Thilo Pregartner, Dr.-Ing. Tumlingen, 2020-05-26

i.V.P.St

Peter Schillinger, Dipl.-Ing.

This DoP has been prepared in different languages. In case there is a dispute on the interpretation the English version shall always prevail.

The Appendix includes voluntary and complementary information in English language exceeding the (language-neutrally specified) legal requirements.

Specific Part

1 Technical description of the product

The "fischer injection system FIS VL" is a bonded fastener consisting of a cartridge with injection mortar fischer FIS VL, fischer FIS VL High Speed or fischer FIS VL Low Speed and a steel element according to Annex A4.

The steel element is placed into a drilled hole filled with injection mortar and is anchored via the bond between metal part, injection mortar and concrete.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

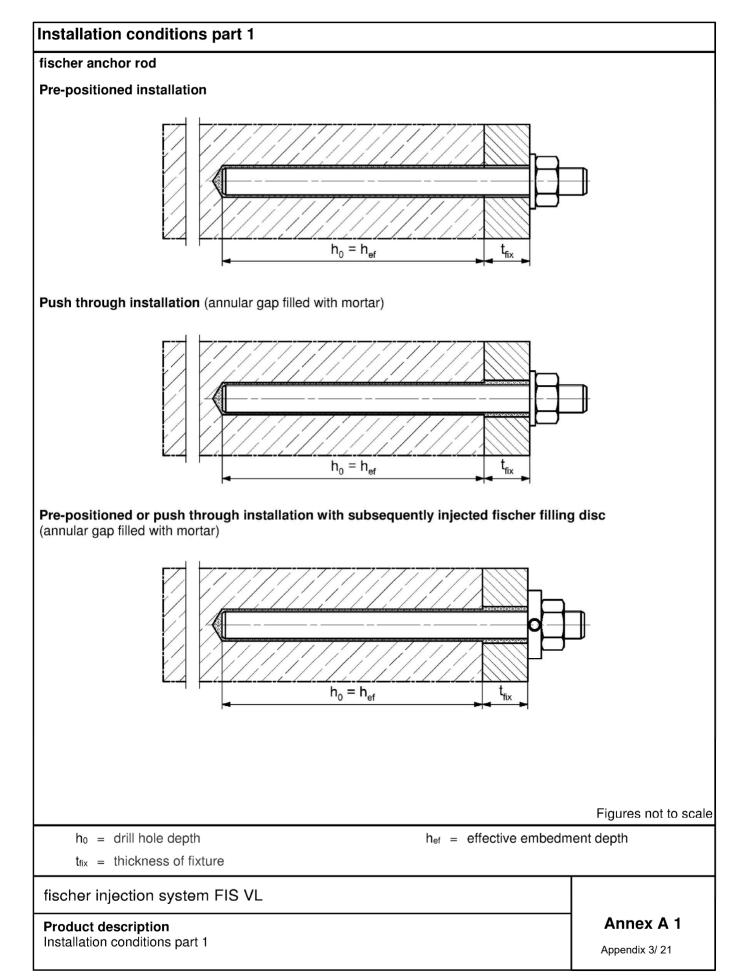
The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

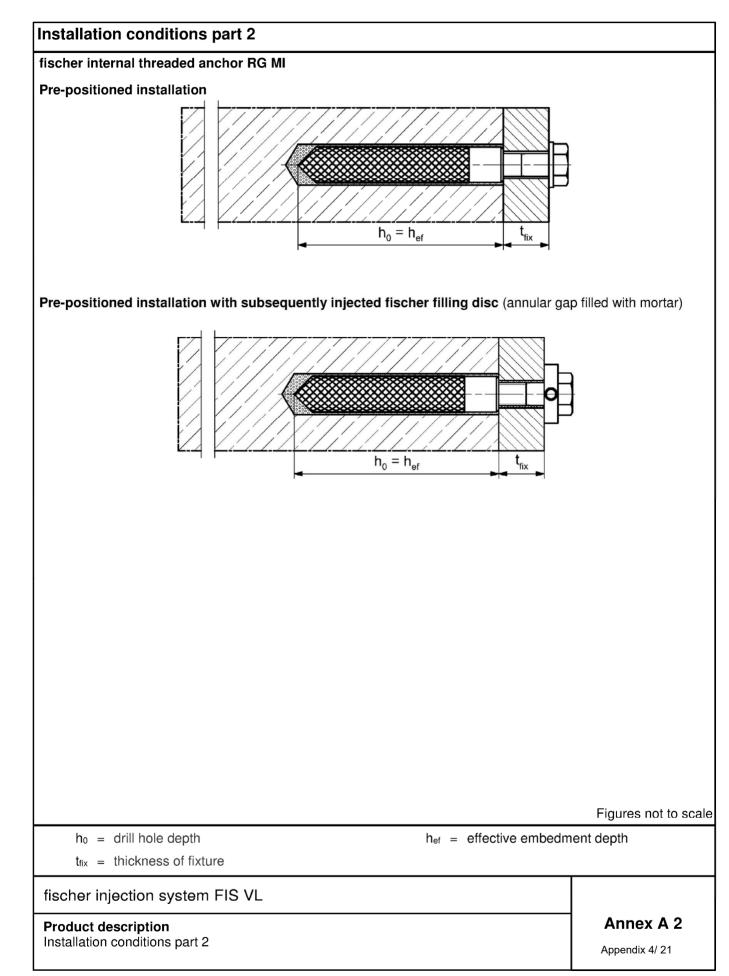
The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

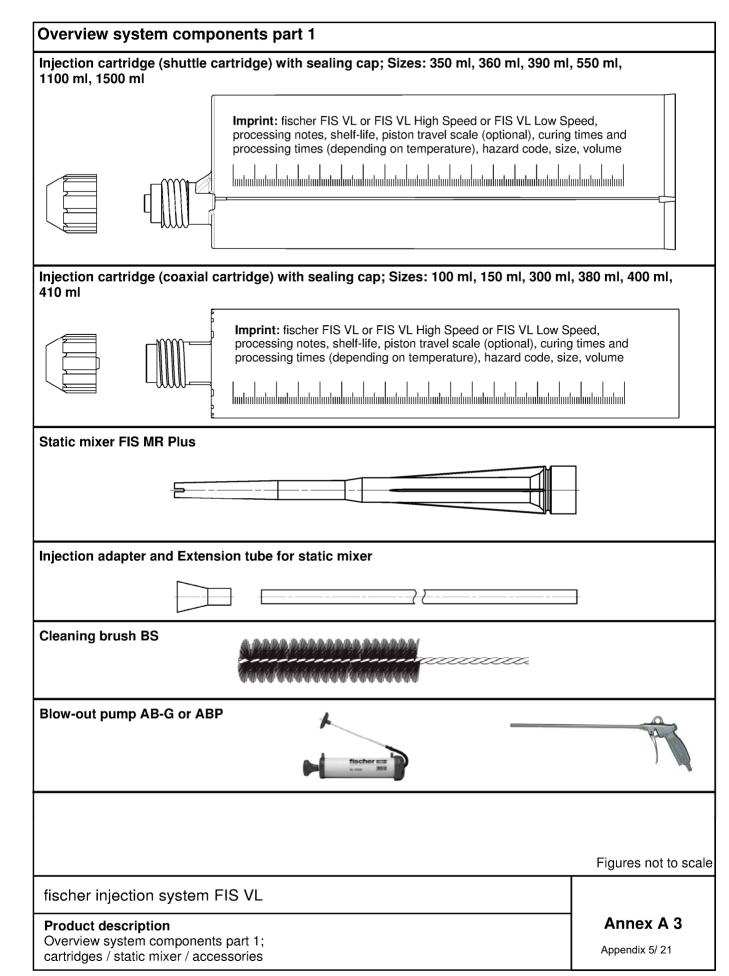
3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance to tension load (static and quasi-static loading)	See Annex B 3 and B 4, C 1 to C 5
Characteristic resistance to shear load (static and quasi-static loading)	See Annex C 1 to C 3
Displacements under short-term and long-term loading	See Annex C 6
Characteristic resistance and displacements for seismic performance categories C1 and C2	No performance assessed


3.2 Hygiene, health and the environment (BWR 3)


Essential characteristic	Performance
Content, emission and/or release of dangerous substances	No performance assessed


4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with the European Assessment Document EAD 330499-01-0601 the applicable European legal act is: [96/582/EC].

The system to be applied is: 1

Overview system components part 2	
fischer anchor rod	
Size: M6, M8, M10, M12, M16, M20, M24, M27, M30	
fischer internal threaded anchor RG MI	
Size: M8, M10, M12, M16, M20	
Screw / threaded rod / washer / hexagon nut	
fischer filling disc with injection adapter	
fischer injection system FIS VL	Figures not to scale
	Annex A 4
Product description Overview system components part 2; steel components	Annex A 4 Appendix 6/ 21

I

Part	Designation		Material	
1	Injection cartridge		Mortar, hardener, filler	
		Steel	Stainless steel R	High corrosion resistant steel HCR
	Steel grade	zinc plated	acc. to EN 10088-1:2014 Corrosion resistance class CRC III acc. to EN 1993-1-4:2015	acc. to EN 10088-1:201 Corrosion resistance cla CRC V acc. to EN 1993-1-4:201
2	Anchor rod	Property class 4.8, 5.8 or 8.8; EN ISO 898-1:2013 zinc plated \geq 5 µm, ISO 4042:2018/Zn5/An(A2K) or hot dip galvanised \geq 40 µm EN ISO 10684:2004 $f_{uk} \leq$ 1000 N/mm ² $A_5 > 8\%$ fracture elongation	$\begin{array}{l} \mbox{Property class 50, 70 or 80} \\ \mbox{EN ISO 3506-1:2009} \\ 1.4401; 1.4404; 1.4578; \\ 1.4571; 1.4439; 1.4362; \\ 1.4062, 1.4662, 1.4462; \\ \mbox{EN 10088-1:2014} \\ f_{uk} \leq 1000 \mbox{ N/mm}^2 \\ \mbox{A}_5 > 8\% \\ \mbox{fracture elongation} \end{array}$	$\begin{array}{l} \mbox{Property class 50 or 80} \\ \mbox{EN ISO 3506-1:2009} \\ \mbox{or property class 70 with} \\ \mbox{f}_{yk} = 560 \ \mbox{N/mm}^2 \\ \mbox{1.4565; 1.4529;} \\ \mbox{EN 10088-1:2014} \\ \mbox{f}_{uk} \leq 1000 \ \mbox{N/mm}^2 \\ \mbox{A}_5 > 8\% \\ \mbox{fracture elongation} \end{array}$
3	Washer ISO 7089:2000	zinc plated ≥ 5 μm, ISO 4042:2018/Zn5/An(A2K) or hotdip galvanised ≥ 40 μm EN ISO 10684:2004	1.4401; 1.4404; 1.4578;1.4571; 1.4439; 1.4362; EN 10088-1:2014	1.4565; 1.4529; EN 10088-1:2014
4	Hexagon nut	Property class 4, 5 or 8; EN ISO 898-2:2012 zinc plated ≥ 5 μm, ISO 4042:2018/Zn5/An(A2K) or hot dip galvanised ≥ 40 μm EN ISO 10684:2004	Property class 50, 70 or 80 EN ISO 3506-1:2009 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; EN 10088-1:2014	Property class 50, 70 or 80 EN ISO 3506-1:2009 1.4565; 1.4529 EN 10088-1:2014
5	fischer internal threaded anchor RG MI	Property class 5.8 ISO 898-1:2013 zinc plated ≥ 5 μm, ISO 4042:2018/Zn5/An(A2K)	Property class 70 EN ISO 3506-1:2009 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; EN 10088-1:2014	Property class 70 EN ISO 3506-1:2009 1.4565; 1.4529; EN 10088-1:2014
6	Commercial standard screw or threaded rod for fischer internal threaded anchor RG MI	Property class 5.8 or 8.8; EN ISO 898-1:2013 zinc plated \geq 5 µm, ISO 4042:2018/Zn5/An(A2K) A ₅ > 8 % fracture elongation	Property class 70 EN ISO 3506-1:2009 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; EN 10088-1:2014 A ₅ > 8 % fracture elongation	$\begin{array}{c} \mbox{Property class 70} \\ \mbox{EN ISO 3506-1:2009} \\ \mbox{1.4565; 1.4529;} \\ \mbox{EN 10088-1:2014} \\ \mbox{A}_5 > 8 \% \\ \mbox{fracture elongation} \end{array}$
7	fischer filling disc similar to DIN 6319-G	zinc plated ≥ 5 μm, ISO 4042:2018/Zn5/An(A2K) or hot dip galvanised ≥ 40 μm EN ISO 10684:2004	1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; EN 10088-1:2014	1.4565;1.4529; EN 10088-1:2014

Specification Table B1.1:			se (part 1) and performan	ce categories					
Anchorages sub				-	VL with				
, monoragoo oac	<u> </u>		Anch	or rod	fischer ir anc	iternal threaded hor RG MI			
Hammer drilling with standard dr bit		#40000000		all s	izes				
Hammer drilling with hollow drill (fischer FHD, He "Duster Expert"; Bosch "Speed Clean"; Hilti "TE-CD, TE-YD DreBo "D-Plus", DreBo "D-Max")	bit eller ; ",	Ī							
Static and quasi	i	uncracked concrete	all sizes	Tables: C1.1 C3.1	all sizes	Tables: C2.1 C3.1 C5.1 C6.2			
static load, in		cracked concrete	M10 bis M20	C4.1 C6.1		_2)			
Use	1	dry or wet concrete		all s	all sizes				
category	12	water filled hole 1)	M 12 t	o M 30	M 8	3 bis M 20			
Installation direc	ction		D3 (downward	and horizontal and u	pwards (e.g. ove	erhead) installation)			
Installation temperature				$T_{i,min} = -10 \ ^{\circ}C \ tc$	$T_{i,max} = +40 \ ^{\circ}C$				
In-service		Temperature range I	-40 °C to +80		ort term temperat g term temperatu				
temperature		Temperature range II	-40 °C to +12		rt term temperat g term temperatu				
¹⁾ Only with ca ²⁾ No perform)ml, 400 ml, 410 m	l					
fischer injec	tion	system FIS V	۲ <u>ــــــــــــــــــــــــــــــــــــ</u>						
Intended use Specifications		1)				Annex B 1			

Appendix 8/21

Specifications of intended use (part 2)

Base materials:

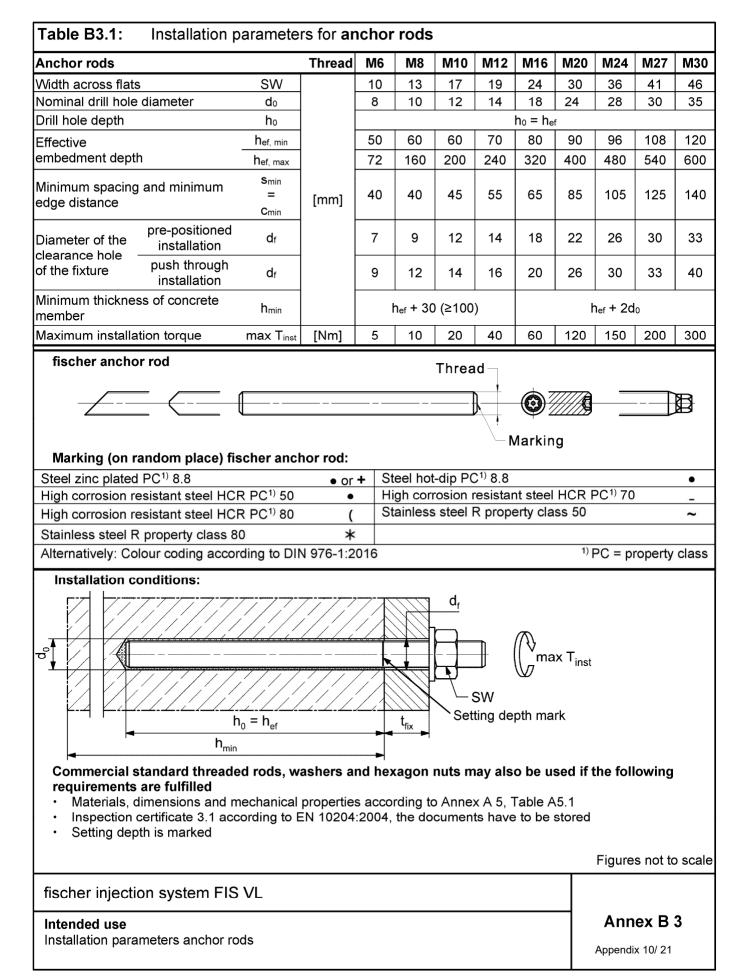
 Compacted reinforced or unreinforced normal weight concrete without fibres of strength classes C20/25 to C50/60 according to EN 206:2013+A1:2016

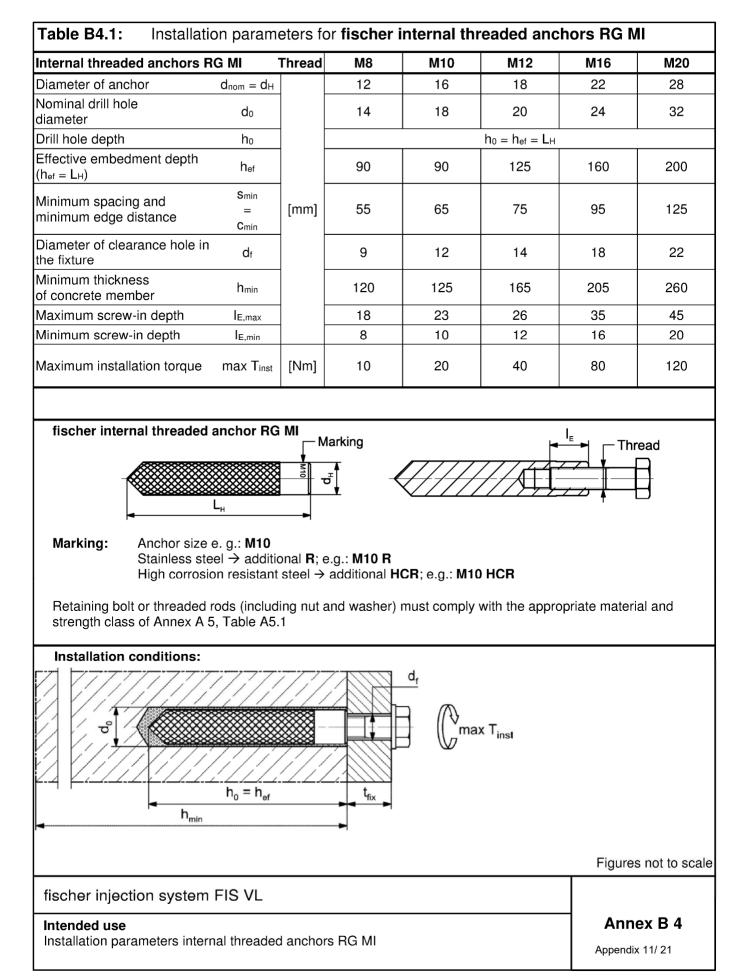
Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (zinc coated steel, stainless steel or high corrosion resistant steel).
- For all other conditions according to EN1993-1-4:2015 corresponding to corrosion resistance classes to Annex A 5 table A5.1.

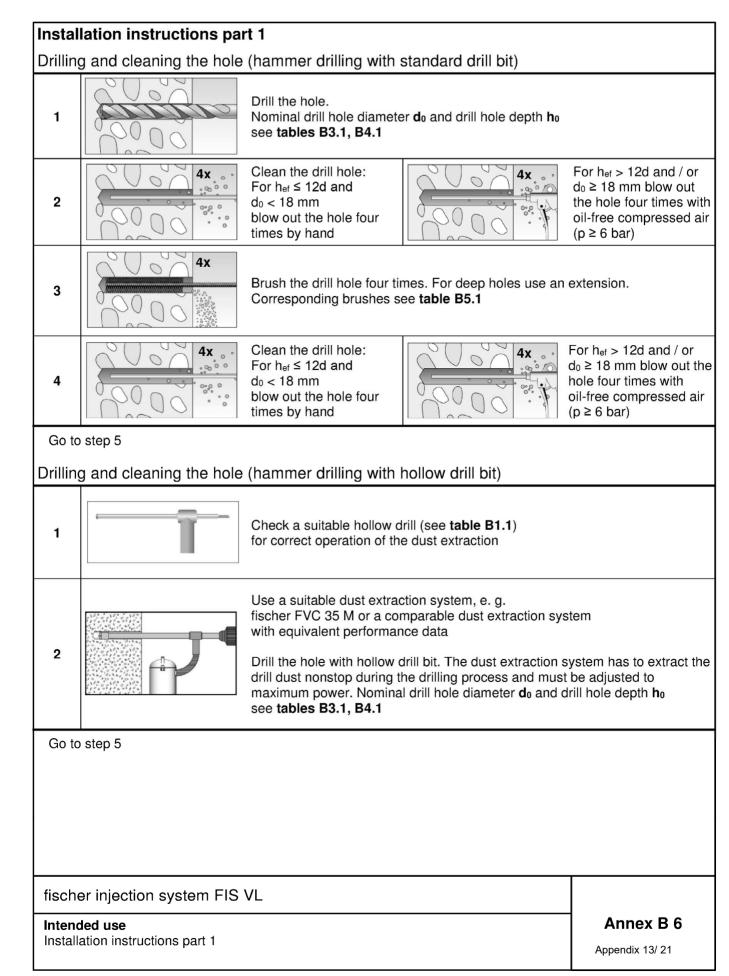
Design:

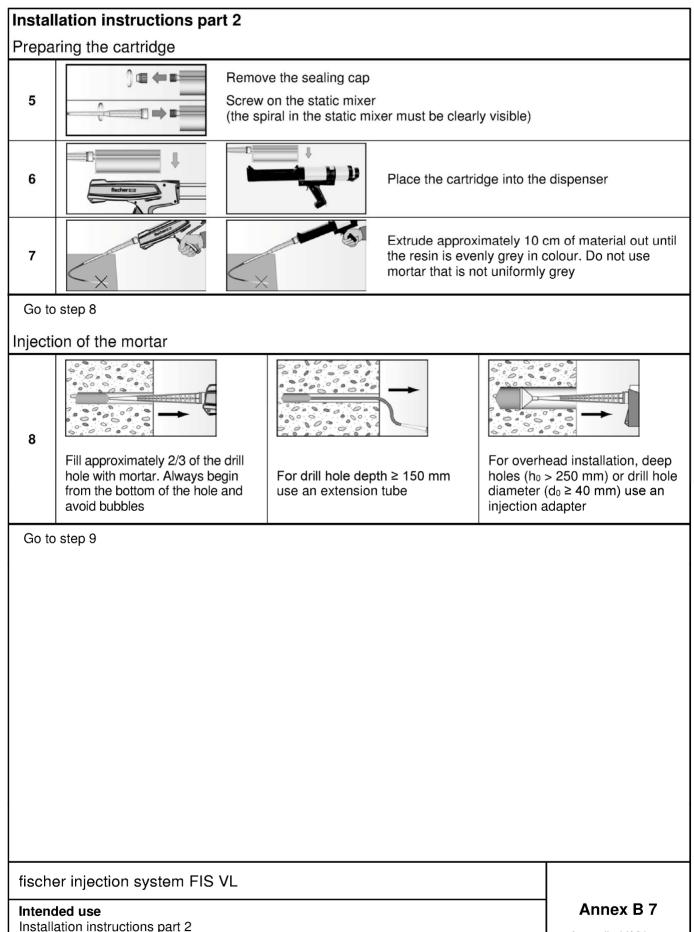
- Anchorages have to be designed by a responsible engineer with experience of concrete anchor design.
- Verifiable calculation notes and drawings are to be prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e. g. position of the anchor relative to reinforcement or to supports, etc.).
- Anchorages are designed in accordance with: EN 1992-4:2018 and EOTA Technical Report TR 055, Edition February 2018.


Installation:


- Anchor installation is to be carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site
- · In case of aborted hole: The hole shall be filled with mortar
- · Anchorage depth should be marked and adhered to on installation
- · Overhead installation is allowed

fischer injection system FIS VL


Intended use Specifications (part 2) Annex B 2


Appendix 9/ 21

liameter	e _{do}		8	10	12	14	16	18	20	24	25	28	30	35
Steel brush liameter BS	db	[mm]	9	11	14	16	2	0	25	26	27	30	4	0
වේ Table B5.2	Max	imum	proce	essin	-	e of th	e mor	tar a	nd mir			-		Ι
Temperatur	re at	w the		mum p	num te process t _{work}	•	,			Minim	ium cur t _{cure}	•	e ¹⁾	
anchoring b [°C]	ase		S VL Speed		IS VL		FIS VL w Spee	ed I	FIS VL F High Speed			FIS VL FIS Low S		
-10 to	-5 ²⁾		-		-		-		12 h		-		-	
> -5 to	0 2)	5	min		-		-		3 h		24	ı	-	
> 0 to	5 ²⁾	5	min	1:	3 min		-		3 h		3 h		6	h
> 5 to	10	3	min	g) min		20 min		50 mi	n	90 m	in	3 h	
> 10 to	20	1	min	5	5 min		10 min		30 mi	n	60 m	in	2	h
> 20 to	30		-	4	l min		6 min		-		45 m	in	60 r	nin
> 30 to	40		-	2	2 min		4 min		-		35 m	in	30 n	nin
²⁾ Minimal car														

Appendix 14/ 21

	2 8 04			
	lation instruc	-	ad anabara DO MI	
9			Only use clean and oil-free Mark the setting depth of th anchor rod or fischer intern anchor down to the bottom slightly while doing so. After inserting the metal pa be emerged around the an	he metal part. Push the al threaded RG MI of the hole, turning it rts, excess mortar mus
		For overhead installations support the metal part with wedges (e.g. fischer centering wedges) or fischer overhead clips.		For push through installation fill the annular gap with mortar
10		Wait for the specified curing time t _{cure} see table B5.2		T _{inst} Mounting the fixture max T _{inst} see tables B3.1 and B4.1
Option		fixture (annular clearance Compressive strength ≥ \$	time is reached, the gap betw e) may be filled with mortar via 50 N/mm ² (e.g. fischer injectio lus). ATTENTION: Using fisch n of the anchor)	a the fischer filling disc. on mortars FIS HB,
fische	er injection sys	stem FIS VL		
Intend	led use			Annex B 8

Intended use Installation instructions part 3 Annex B 8

Appendix 15/ 21

Table C1.1:Characteristic values for under tension / shear load of fischer anchor rodsand standard threaded rods

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Anakan na di (stara ta diti	de de la								1400		140-	Mag
9 % Stele zinc plated memory of 9 % 4.8 5.8 5.8 5.6 7.0 14 4.8 5.8 5.6 7.0 14 8 15(13)(22(21) 33 43 63 43 98 43 141 148 42 22 43 79 43 123 79 172 43 177 43 230 43 237 43 177 43 230 43 28 48 44 44 Partial factors '' We we stand steel HCR 4.8 5.8 50 70 5.8 50 70 14 26 41 59 16 10 172 247 43 22 48 248 Partial factors '' We we stand steel HCR 4.8 5.8 50 70 5.8 50 70 1.50°						M8	M10	M12	M16	M20	M24	M27	M30
$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c}$	Bearing capacity under tens	sion load		1									
and open open open open open open open open													
E resistant steel HCR 80 16 30 47 68 126 196 282 368 443 Partial factors ¹) Steel zinc plated 4.8 5.8 1.50 2.86 1.50 Steel zinc plated 5.8 5.7 70 1.50 2.86 1.50 Bearing capacity under shear load, steel failure ⁹ 4.8 5.8 1.50 2.86 1.60 Bearing capacity under shear load, steel failure ⁹ 4.8 5.8 8.8 1.10 1.33 59 85 110 133 160 Bearing capacity under shear load, steel failure ⁹ 4.8 59 9 15 21 39 61 89 110 133 160 141 144 222 361 110 133 160 111 144 222 110 133 115 141 184 222 110 133 115 141 184 222 110 133 115 141 184 222 115 141 184 222 115 141 184 223 34 <td>Steel zinc plated</td> <td>_≩</td> <td></td>	Steel zinc plated	_≩											
E resistant steel HCR 80 16 30 47 68 126 196 282 368 443 Partial factors ¹) Steel zinc plated 4.8 5.8 1.50 2.86 1.50 Steel zinc plated 5.8 5.7 70 1.50 2.86 1.50 Bearing capacity under shear load, steel failure ⁹ 4.8 5.8 1.50 2.86 1.60 Bearing capacity under shear load, steel failure ⁹ 4.8 5.8 8.8 1.10 1.33 59 85 110 133 160 Bearing capacity under shear load, steel failure ⁹ 4.8 59 9 15 21 39 61 89 110 133 160 141 144 222 361 110 133 160 111 144 222 110 133 115 141 184 222 110 133 115 141 184 222 110 133 115 141 184 222 115 141 184 222 115 141 184 223 34 <td></td> <td>ass</td> <td>8.8</td> <td>[kN]</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		ass	8.8	[kN]									
E resistant steel HCR 80 16 30 47 68 126 196 282 368 443 Partial factors ¹) Steel zinc plated 4.8 5.8 1.50 2.86 1.50 Steel zinc plated 5.8 5.7 70 1.50 2.86 1.50 Bearing capacity under shear load, steel failure ⁹ 4.8 5.8 1.50 2.86 1.60 Bearing capacity under shear load, steel failure ⁹ 4.8 5.8 8.8 1.10 1.33 59 85 110 133 160 Bearing capacity under shear load, steel failure ⁹ 4.8 59 9 15 21 39 61 89 110 133 160 141 144 222 361 110 133 160 111 144 222 110 133 115 141 184 222 110 133 115 141 184 222 110 133 115 141 184 222 115 141 184 222 115 141 184 223 34 <td>ਲੂ ਲੂ Stainless steel R and</td> <td>P C D</td> <td></td>	ਲੂ ਲੂ Stainless steel R and	P C D											
16 30 17 68 126 196 252 368 444 Partial factors ¹⁾ 4.8 5.8 1.50 1.50 1.50 1.50 2 Stainless steel R and high corrosion resistant steel HCR 5.8 5.8 1.50 1.50 1.50 2 2.86 1.50 2.86 1.50 2.86 1.60 1.60 Bearing capacity under shear load, steel failure ³ 4.8 5.9 1.60 1.60 1.60 Bearing capacity under shear load, steel failure ³ without lever arm Gene failures 3 4.4 9(8) 14(13) 20 38 59 85 110 133 Gene failures steel R and Gene faigh corrosion resistant steel HCR 5.8 50 9 15 21 39 61 80 15 23 34 63 98 141 184 225 Gene failure plated Gene fail failors 30 50 6 15 13 30(27) 52 133 259 448 66 15(13) 3	S high corrosion												
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			80		16	30	47	68	126	196	282	368	449
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Partial factors "	Ι	1.0						4 50				
resistant steel HCR 1,60 Bearing capacity under shear load, steel failure ³ without lever arm $g^{\frac{3}{2}}$ Steel zinc plated ξ $g^{\frac{3}{2}}$ Steel zinc plated ξ $g^{\frac{3}{2}}$ ξ $g^{\frac{3}{2}}$ ξ $g^{\frac{3}{2}}$ ξ ξ $g^{\frac{3}{2}}$ ξ ξ $g^{\frac{3}{2}}$ ξ ξ ξ ξ $g^{\frac{3}{2}}$ ξ													
resistant steel HCR 1,60 Bearing capacity under shear load, steel failure ³ without lever arm $g^{\frac{3}{2}}$ Steel zinc plated ξ $g^{\frac{3}{2}}$ Steel zinc plated ξ $g^{\frac{3}{2}}$ ξ $g^{\frac{3}{2}}$ ξ $g^{\frac{3}{2}}$ ξ ξ $g^{\frac{3}{2}}$ ξ ξ $g^{\frac{3}{2}}$ ξ ξ ξ ξ $g^{\frac{3}{2}}$ ξ		∾ £		-									
resistant steel HCR 1,60 Bearing capacity under shear load, steel failure ³ without lever arm $g^{\frac{3}{2}}$ Steel zinc plated ξ $g^{\frac{3}{2}}$ Steel zinc plated ξ $g^{\frac{3}{2}}$ ξ $g^{\frac{3}{2}}$ ξ $g^{\frac{3}{2}}$ ξ ξ $g^{\frac{3}{2}}$ ξ ξ $g^{\frac{3}{2}}$ ξ ξ ξ ξ $g^{\frac{3}{2}}$ ξ		be las							,				
resistant steel HCR 1,60 Bearing capacity under shear load, steel failure ³ without lever arm $g^{\frac{3}{2}}$ Steel zinc plated ξ $g^{\frac{3}{2}}$ Steel zinc plated ξ $g^{\frac{3}{2}}$ ξ $g^{\frac{3}{2}}$ ξ $g^{\frac{3}{2}}$ ξ ξ $g^{\frac{3}{2}}$ ξ ξ $g^{\frac{3}{2}}$ ξ ξ ξ ξ $g^{\frac{3}{2}}$ ξ	Stainless steel R and			07									
The problem is problem i		1,		87									
without lever arm 9 $\frac{5}{12}$ Steel zinc plated $\frac{4.8}{5.8}$ $\frac{4.8}{5.8}$ $\frac{4}{5.8}$ 9 14(13) 20 38 59 85 110 135 9 9 15 141 184 225 47 74 106 138 166 9 15 141 184 225 47 74 106 138 166 9 15 21 39 61 89 141 184 225 0 70 80 7 13 20 30 55 86 124 161 197 9 15 23 34 63 98 141 184 225 Outlity factor K_7 [-1] 110 with lever arm $\frac{5}{29}$ 50 7 19(16) 37(33) 65 166 324 560 833 112 9 5 50 7 19(16) 37(33) 65 166 3				failur	r = 3)				1,60				
$ \frac{3}{9} \int_{-\infty}^{\infty} \frac{5}{9} \frac{15}{21} \frac{21}{39} \frac{39}{61} \frac{6}{89} \frac{141}{1184} \frac{124}{225} \frac{141}{74} \frac{106}{138} \frac{138}{166} \frac{16}{9} \frac{15}{9} \frac{15}{21} \frac{21}{39} \frac{39}{61} \frac{6}{89} \frac{115}{141} \frac{144}{1184} \frac{225}{25} \frac{11}{7} \frac{11}{1184} \frac{11}{1184} \frac{12}{1184} \frac{11}{1184} \frac{11}{1$		ar load,	steel	Tallu	r e ^s								
$ \begin{array}{c} 30 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\$			10		1	0(0)	14(12)	20	20	50	95	110	125
$ \frac{1}{12} = \frac{1}{12} + \frac{1}{12}$													
$ \frac{1}{2} \frac{9}{2} \frac{9}{2} \frac{141}{184} \frac{184}{225} \frac{23}{34} \frac{63}{98} \frac{98}{141} \frac{184}{225} \frac{225}{133} \frac{259}{448} \frac{655}{895} \frac{895}{895} \frac{112}{10} \frac{10}{10} \frac{112}{10} \frac{30(27)}{52} \frac{52}{133} \frac{132}{59} \frac{448}{560} \frac{665}{833} \frac{895}{112} \frac{12}{12} \frac{30(26)}{60(53)} \frac{60(53)}{105} \frac{105}{266} \frac{519}{519} \frac{896}{896} \frac{1333}{112} \frac{179}{12} \frac{12}{30} \frac{30(26)}{60} \frac{60(53)}{105} \frac{105}{266} \frac{519}{519} \frac{896}{896} \frac{1333}{112} \frac{112}{10} \frac{10}{26} \frac{26}{52} \frac{92}{92} \frac{232}{232} \frac{454}{454} \frac{784}{1167} \frac{1167}{157} \frac{157}{12} \frac{133}{30} \frac{165}{166} \frac{159}{19} \frac{896}{1333} \frac{179}{12} \frac{10}{10} \frac{26}{26} \frac{52}{519} \frac{92}{232} \frac{454}{454} \frac{784}{1167} \frac{1167}{157} \frac{157}{12} \frac{130}{30} \frac{60}{105} \frac{105}{266} \frac{519}{519} \frac{896}{1333} \frac{133}{179} \frac{179}{12} \frac{130}{30} \frac{60}{105} \frac{126}{55} \frac{519}{59} \frac{48}{58} \frac{1.25}{5} \frac$		s it											
$ \frac{1}{2} \frac{9}{2} \frac{9}{2} \frac{141}{184} \frac{184}{225} \frac{23}{34} \frac{63}{98} \frac{98}{141} \frac{184}{225} \frac{225}{133} \frac{259}{448} \frac{655}{895} \frac{895}{895} \frac{112}{10} \frac{10}{10} \frac{112}{10} \frac{30(27)}{52} \frac{52}{133} \frac{132}{59} \frac{448}{560} \frac{665}{833} \frac{895}{112} \frac{12}{12} \frac{30(26)}{60(53)} \frac{60(53)}{105} \frac{105}{266} \frac{519}{519} \frac{896}{896} \frac{1333}{112} \frac{179}{12} \frac{12}{30} \frac{30(26)}{60} \frac{60(53)}{105} \frac{105}{266} \frac{519}{519} \frac{896}{896} \frac{1333}{112} \frac{112}{10} \frac{10}{26} \frac{26}{52} \frac{92}{92} \frac{232}{232} \frac{454}{454} \frac{784}{1167} \frac{1167}{157} \frac{157}{12} \frac{133}{30} \frac{165}{166} \frac{159}{19} \frac{896}{1333} \frac{179}{12} \frac{10}{10} \frac{26}{26} \frac{52}{519} \frac{92}{232} \frac{454}{454} \frac{784}{1167} \frac{1167}{157} \frac{157}{12} \frac{130}{30} \frac{60}{105} \frac{105}{266} \frac{519}{519} \frac{896}{1333} \frac{133}{179} \frac{179}{12} \frac{130}{30} \frac{60}{105} \frac{126}{55} \frac{519}{59} \frac{48}{58} \frac{1.25}{5} \frac$		ope	0.0	[kN]									
$ \frac{1}{2} \frac{9}{2} \frac{9}{2} \frac{141}{184} \frac{184}{225} \frac{23}{34} \frac{63}{98} \frac{98}{141} \frac{184}{225} \frac{225}{133} \frac{259}{448} \frac{655}{895} \frac{895}{895} \frac{112}{10} \frac{10}{10} \frac{112}{10} \frac{30(27)}{52} \frac{52}{133} \frac{132}{59} \frac{448}{560} \frac{665}{833} \frac{895}{112} \frac{12}{12} \frac{30(26)}{60(53)} \frac{60(53)}{105} \frac{105}{266} \frac{519}{519} \frac{896}{896} \frac{1333}{112} \frac{179}{12} \frac{12}{30} \frac{30(26)}{60} \frac{60(53)}{105} \frac{105}{266} \frac{519}{519} \frac{896}{896} \frac{1333}{112} \frac{112}{10} \frac{10}{26} \frac{26}{52} \frac{92}{92} \frac{232}{232} \frac{454}{454} \frac{784}{1167} \frac{1167}{157} \frac{157}{12} \frac{133}{30} \frac{165}{166} \frac{159}{19} \frac{896}{1333} \frac{179}{12} \frac{10}{10} \frac{26}{26} \frac{52}{519} \frac{92}{232} \frac{454}{454} \frac{784}{1167} \frac{1167}{157} \frac{157}{12} \frac{130}{30} \frac{60}{105} \frac{105}{266} \frac{519}{519} \frac{896}{1333} \frac{133}{179} \frac{179}{12} \frac{130}{30} \frac{60}{105} \frac{126}{55} \frac{519}{59} \frac{48}{58} \frac{1.25}{5} \frac$	Stainless steel R and	L L L L L L L L L L L L L L L L L L L											
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	resistant steel HCR												
with lever arm $\frac{1}{10} = \frac{1}{10} = \frac{1}$				[_]	0	15	23	- 54		90	141	104	225
$\frac{1}{20} \frac{1}{20} \frac$			10,						1,0				
$\frac{1}{10} = \frac{5}{10} $			4.8		6	15(13)	30(27)	52	133	259	448	665	899
Partial factors ¹) $\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $. 👻 Steel zinc plated			-							560		1123
Partial factors ¹) $\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $	e e c	erty			12	+		105	266	519	896	1333	1797
Partial factors ¹) $\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $	La C La Stainless steel B and	clai	50	[[Nm]									1123
Partial factors ¹) $\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $	high corrosion	<u>م</u>	70		10	26		92	232		784		1573
Partial factors ¹)	e resistant steel HCR												1797
Image: Steel zinc plated Image: Steel zi	Partial factors ¹⁾	1		1							1		
resistant steel HCR 80 1.33 1) In absence of other national regulations 2) Only admissible for high corrosion resistant steel HCR, with fyk / fuk ≥ 0,8 and A5 > 12 % (e.g. fischer anchor rods) 3) Values in brackets are valid for undersized threaded rods with smaller stress area As for hot dip galvanised standard threaded rods according to EN ISO 10684:2004+AC:2009 fischer injection system FIS VL Annex C 1 Characteristic values for steel failure under tension / shear load of fischer anchor rods	<i>۲</i>		4.8						1.25				
resistant steel HCR 80 1.33 1) In absence of other national regulations 2) Only admissible for high corrosion resistant steel HCR, with fyk / fuk ≥ 0,8 and A5 > 12 % (e.g. fischer anchor rods) 3) Values in brackets are valid for undersized threaded rods with smaller stress area As for hot dip galvanised standard threaded rods according to EN ISO 10684:2004+AC:2009 fischer injection system FIS VL Annex C 1 Characteristic values for steel failure under tension / shear load of fischer anchor rods	용 Steel zinc plated	rt	5.8						1.25				
resistant steel HCR 80 1.33 1) In absence of other national regulations 2) Only admissible for high corrosion resistant steel HCR, with fyk / fuk ≥ 0,8 and A5 > 12 % (e.g. fischer anchor rods) 3) Values in brackets are valid for undersized threaded rods with smaller stress area As for hot dip galvanised standard threaded rods according to EN ISO 10684:2004+AC:2009 fischer injection system FIS VL Annex C 1 Characteristic values for steel failure under tension / shear load of fischer anchor rods	ul fa	per		· [-]									
resistant steel HCR 80 1.33 1) In absence of other national regulations 2) Only admissible for high corrosion resistant steel HCR, with fyk / fuk ≥ 0,8 and A5 > 12 % (e.g. fischer anchor rods) 3) Values in brackets are valid for undersized threaded rods with smaller stress area As for hot dip galvanised standard threaded rods according to EN ISO 10684:2004+AC:2009 fischer injection system FIS VL Annex C 1 Characteristic values for steel failure under tension / shear load of fischer anchor rods	$\frac{\omega}{E} \gtrsim Stainless steel R and$	20											
 ¹⁾ In absence of other national regulations ²⁾ Only admissible for high corrosion resistant steel HCR, with f_{yk} / f_{uk} ≥ 0,8 and A₅ > 12 % (e.g. fischer anchor rods) ³⁾ Values in brackets are valid for undersized threaded rods with smaller stress area A_s for hot dip galvanised standard threaded rods according to EN ISO 10684:2004+AC:2009 fischer injection system FIS VL Performances Characteristic values for steel failure under tension / shear load of fischer anchor rods 	nigh corrosion			-				1.:		56			
fischer injection system FIS VL Performances Characteristic values for steel failure under tension / shear load of fischer anchor rods Annex C 1	 In absence of other nation Only admissible for high c rods) Values in brackets are va 	corrosion	ations resis	stant s zed th	readed	l rods w	ith sma	ller stre	nd A₅ >		-		
Characteristic values for steel failure under tension / shear load of fischer anchor rods								-					
Characteristic values for steel failure under tension / shear load of fischer anchor rods	Performances										Anı	nex C	1
		el failure	unde	er tens	ion / sł	near loa	d of fisc	her and	chor roc	ls			

and standard threaded rods

Appendix 16/21

Fischer internal t Bearing capacity Charact. resistance with screw Partial factors ¹⁾			RG MI									
Charact. resistance with screw	/ unde	r toneion la			M8	M10	M12	M16	M20			
resistance with screw			oad, ste	el failu		-						
resistance with screw		Property	5.8		19	29	43	79	123			
screw	N _{Rk,s}	class	8.8	[kN]	29	47	68	108	179			
	INKK,S	Property	R		26	41	59	110	172			
Partial factors ¹⁾		class 70	HCR		26	41	59	110	172			
		Property	5.8				1,50					
Partial factors	γMs,N	class	8.8	[-] -			1,50					
	1115,11	Property	R	1 L	1,87							
		class 70	HCR				1,87					
Bearing capacity	/ unde	r shear loa	d, stee	failur	e							
Without lever ar	m			, ,		1	1	1				
Charact		Property	5.8	\downarrow	9,2	14,5	21,1	39,2	62,0			
Charact. resistance with	V ⁰ Rk,s	class	8.8	[kN]	14,6	23,2	33,7	54,0	90,0			
screw	• 110,5	Property	R		12,8	20,3	29,5	54,8	86,0			
		class 70	HCR		12,8	20,3	29,5	54,8	86,0			
Ductility factor			k 7	[-]			1,0					
With lever arm				, , , , , , , , , , , , , , , , , , ,					-			
Charact.		Property	5.8		20	39	68	173	337			
resistance with	M ⁰ Rk,s	class	8.8	[Nm]	30	60	105	266	519			
screw		Property	R		26	52	92	232	454			
		class 70	HCR		26	52	92	232	454			
Partial factors ¹⁾		_					4.05					
		Property	5.8	-	1,25							
Partial factors	γMs,V	class	8.8	[-] -	1,25							
		Property class 70	R HCR	-			1,56					
¹⁾ In absence of							1,56					
fischer injection Performances Characteristic va								Ann	ex C 2			

Size Tension load Installation factor Factors for the com								All size	s					
Installation factor														
		γinst	[-]				See an	nex C 4	4 to C 5					
	oressive stren			ete > C	20/25		<u></u>							
	C25/30	.g						1,05						
	C30/37			1,10										
Increasing	C35/45							1,15						
factor for TRk	C40/50	$\Psi_{\rm C}$	[-]	1,19										
	C45/55			1,22										
	C50/60							1,26						
Splitting failure								, -						
1 5	h / h _{ef} ≥ 2,0							1,0 h _{ef}						
Edge distance 2,0	> h / h _{ef} > 1,3	Ccr.sp					4,6	h _{ef} - 1,	8 h					
.	h / h _{ef} ≤ 1,3		[mm]					2,26 h _{et}						
Spacing		Scr,sp	1					2 C _{cr,sp}						
Concrete cone failu	e		1											
Uncracked concrete		k ucr,N						11,0						
Cracked concrete		k cr,N	[-]					7,7						
Edge distance		Ccr,N	r	1.5 h _{ef}										
Spacing		Scr,N	[mm]	2 C _{cr,N}										
Factors for sustaine	d tension load	ł												
Temperature range			[-]		50 °(C / 80 °C	С		72	2 °C / 1	20 °C			
Factor		Ψ^0_{sus}	[-]	0,74						0,87				
Shear load														
Installation factor		γinst	[-]	1,2										
Concrete pry-out fai	lure	1						,						
Factor for pry-out failu		k ₈	[-]					2,0						
Concrete edge failu								<u> </u>						
Effective length of fas shear loading		lf	[mm]					(h _{ef} ; 12 (h _{ef} ; 8 d) mm)				
Calculation diamete	rs							<u>, ,</u>		,				
Size				M6	M8	M10	M12	M16	M20	M24	M27	M30		
fischer anchor rods an standard threaded roo		dnom		6	8	10	12	16	20	24	27	30		
fischer	nors	dnom	[mm]	_1)	12	16	18	22	28	_1)	_1)	_1)		

Table C	4.1	: Characte anchor re uncracke	ods an	d stand a	ard th	reade							ıer
Anchor r	od /	standard thread	led rod		M6	M8	M10	M12	M16	M20	M24	M27	M30
Combine	d pu	Illout and concre	ete con	e failure		-	-	-		-	-	-	
Calculatio	n dia	ameter	d	[mm]	6	8	10	12	16	20	24	27	30
Uncracke	ed co	oncrete											
Characte	risti	c bond resistan	ce in un	cracked	concre	te C20/	25						
Hammer-	drillir	ng with standard	drill bit o	r hollow d	rill bit (o	dry or w	et conc	rete)					
Tem-	I:	50 °C / 80 °C			9,0	11,0	11,0	11,0	10,0	9,5	9,0	8,5	8,5
perature range	II:	72 °C / 120 °C	$ au_{Rk,ucr}$	[N/mm ²]	6,5	9,5	9,5	9,0	8,5	8,0	7,5	7,0	7,0
	drillir	ng with standard	drill bit o	r hollow d	rill bit (\	vater fil	led hole	e) ¹⁾					
Tem-		50 °C / 80 °C			_2)	_2)	_2)	9,5	8,5	8,0	7,5	7,0	7,0
perature		72 °C / 120 °C	$ au_{Rk,ucr}$	[N/mm ²]	_2)	_2)	_2)	7,5	7,0	6,5	6,0	6,0	6,0
range Installati								7,0	7,0	0,0	0,0	0,0	0,0
Dry or we									1,2				
Water fille			γinst	[-]	_2)	_2)	_2)		1,2	1 4	1 ¹⁾		
Cracked		-								• •			
		c bond resistan	ce in cra	acked cor	ncrete	C20/25							
		ng with standard					et conc	rete)					
Tem-		50 °C / 80 °C			_2)	_2)	6,0	6,0	6,0	5,5	_2)	_2)	_2)
perature		72 °C / 120 °C	$ au_{Rk,cr}$	[N/mm²]	_2)	_2)	5,0		6,0	5,0	_2)	_2)	_2)
range			ماتنا النام	r bellevi d			· ·	6,0	0,0	5,0	/	/	/
Tem-		ng with standard		r nollow a	<u>_2)</u>				5.0	4.5	_2)	_2)	_2)
perature		50 °C / 80 °C	$ au_{Rk,cr}$	[N/mm ²]				5,0	5,0	4,5			
range	II:	72 °C / 120 °C	,e.		_2)	_2)	_2)	4,0	4,0	4,0	_2)	_2)	_2)
Installati				1									
Dry or wet			γinst	[-]					1,2				
Water fille	d hol	е	711101		_2)	_2)	_2)			1,4	4 ¹⁾		
		coaxial cartridge mance assessed		l, 400 ml,	410 ml								
Perform	nanc										Anı	nex C	4
		c values for com threaded rods	bined pu	Ill-out and	concre	te failur	e for fis	cher an	ichor ro	d	Append	dix 19/ 21	

Table C5.1:Characteristic values for combined pull-out and concrete failure for fischer
internal threaded anchors RG MI in hammer drilled holes; uncracked
concrete

Internal threaded anchor	M8	M10	M12	M16	M20			
Combined pullout and co	ncrete con	e failure		-	-	-	-	
Calculation diameter	d	[mm]	12	16	18	22	28	
Uncracked concrete		••					-	
Characteristic bond resis	tance in ur	cracked o	concrete C2	0/25				
Hammer-drilling with stand	<u>ard drill bit c</u>	or hollow d	<u>rill bit (dry or</u>	wet concrete	<u>)</u>			
Tem- I: 50 °C / 80 °C		[N]/ma.ma2]	10,5	10,0	9,5	9,0	8,5	
perature II: 72 °C / 120	°C ^{TRk,ucr}	[N/mm ²] -	9,0	8,0	8,0	7,5	7,0	
Hammer-drilling with stand	ard drill bit c	or hollow d	rill bit (water	filled hole)1)				
Tem- I: 50 °C / 80 °C		[N/mm ²]	10,0	9,0	9,0	8,5	8,0	
perature II: 72 °C / 120	°C		7,5	6,5	6,5	6,0	6,0	
Installation factors		• •				•	•	
Dry or wet concrete		[-]	1,2					
Water filled hole	γinst				1,4 ¹⁾			

fischer injection system FIS VL

Performances Characteristic values for combined pull-out and concrete failure for fischer internal threaded anchors RG MI Annex C 5

Appendix 20/ 21

Anchor r	od	M6	M8	M10	M12	M16	M20	M24	M27	M30
Displace	ment-Factors	for tensic	on load ¹⁾							
Uncracke	ed concrete; T	emperatu	ire range	I, II						
δ N0-Factor	[mm/(N/mm²)]	0,09	0,09	0,09	0,10	0,10	0,10	0,10	0,11	0,12
δN∞-Factor		0,10	0,10	0,10	0,12	0,12	0,12	0,13	0,13	0,14
Cracked	concrete; Tem	nperature	range I, I	l		•	·		• •	·
δN0-Factor	[mm/(N/mm²)]	_3)	_3)	0,12	0,12	0,13	0,13	_3)	_3)	_3)
δ N0-Factor		_3)	_3)	0,27	0,30	0,30	0,30	_3)	_3)	_3)
Displace	ment-Factors	for shear	load ²⁾				•			
Uncracke	ed or cracked	concrete	; Tempera	ture rang	e I, II					
δ V0-Factor	[mm/kN]	0,11	0,11	0,11	0,10	0,10	0,09	0,09	0,08	0,07
δv∞-Factor		0,12	0,12	0,12	0,11	0,11	0,10	0,10	0,09	0,09

¹⁾ Calculation of effective displacement:

 $\delta_{\text{NO}} = \delta_{\text{NO-Factor}} \, \cdot \, \tau_{\text{Ed}}$

 $\delta_{N^{\infty}} = \delta_{N^{\infty}\text{-}\mathsf{Factor}} \, \cdot \, \tau_{\mathsf{Ed}}$

(τ_{Ed} : Design value of the applied tensile stress)

³⁾ No performance assessed

²⁾ Calculation of effective displacement:

 $\delta_{\text{V0}} = \delta_{\text{V0-Factor}} \, \cdot \, V_{\text{Ed}}$

 $\delta_{V^{\infty}} = \delta_{V^{\infty}\text{-}Factor}\,\cdot\,V_{Ed}$

 $(V_{Ed}: Design value of the applied shear force)$

Table C6.2: Displacements for fischer internal threaded anchors RG MI

Internal threaded anchor RG MI		M8	M10	M12	M16	M20
Displace	ement-Factors	for tension load ¹⁾	j			
Uncrack	ed concrete; T	emperature rang	e I, II			
δ_{N0} -Factor	[mm/(N/mm²)]	0,10	0,11	0,12	0,13	0,14
δN∞-Factor		0,13	0,14	0,15	0,16	0,18
Displace	ement-Factors	for shear load ²⁾				
Uncrack	ed concrete; T	emperature rang	e I, II			
δv0-Factor	– [mm/kN]	0,12	0,12	0,12	0,12	0,12
δv∞-Factor		0,14	0,14	0,14	0,14	0,14

¹⁾ Calculation of effective displacement:

 $\delta_{\text{NO}} = \delta_{\text{NO-Factor}} \, \cdot \, \tau_{\text{Ed}}$

 $\delta_{\mathsf{N}\infty} = \delta_{\mathsf{N}\infty\text{-}\mathsf{Factor}} \, \cdot \, \tau_{\mathsf{Ed}}$

(τ_{Ed} : Design value of the applied tensile stress)

²⁾ Calculation of effective displacement:

 $\delta_{V0} = \delta_{V0\text{-Factor}} \cdot V_{\text{Ed}}$

 $\delta_{V^{\infty}} = \delta_{V^{\infty}\text{-}\mathsf{Factor}} \, \cdot \, V_{\mathsf{Ed}}$

(V_{Ed}: Design value of the applied shear force)

fischer injection system FIS VL

Performances

Displacements for anchor rods and fischer internal threaded anchors RG MI

Annex C 6

Appendix 21/21