

190 00 Prague Czech Republic eota@tzus.cz

European Technical Assessment

ETA 17/0659 of 17/07/2019

Technical Assessment Body issuing the ETA:

Trade name of the construction product

Product family to which the construction

product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with regulation (EU) No 305/2011, on the basis of

This version replaces

Technical and Test Institute for Construction Prague

MOPUR3

Product area code: 33

Bonded injection type anchor for use in cracked and uncracked concrete

Index Técnicas Expansivas, S.L. P.I. La Portalada II C. Segador 13

26006 Logroño

Spain

Index plant 1

21 pages including 17 Annexes which form

an integral part of this assessment.

EAD 330499-01-0601

ETA 17/0659 issued on 11/11/2018

Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and should be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full (excepted the confidential Annex(es) referred to above). However, partial reproduction may be made, with the written consent of the issuing Technical Assessment Body - Technical and Test Institute for Construction Prague. Any partial reproduction has to be identified as such.

1. Technical description of the product

The MOPUR3 with steel elements is bonded anchor (injection type).

Steel elements can be galvanized or stainless steel threaded rods or rebars.

Steel element is placed into a drilled hole filled with injection mortar. The steel element is anchored via the bond between metal part, injection mortar and concrete. The anchor is intended to be used with various embedment depth up to 20 diameters.

The illustration and the description of the product are given in Annex A.

2. Specification of the intended use in accordance with the applicable EAD

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The provisions made in this European Technical Assessment are based on an assumed working life of the anchor of 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the products in relation to the expected economically reasonable working life of the works.

3. Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Static and quasi-static loading	
Resistance to steel failure (tension)	See Annex C 1, C 2
Resistance to combined pull-out and concrete failure	See Annex C 1, C 2
Resistance to concrete cone failure	See Annex C 1, C 2
Edge distance to prevent splitting under load	See Annex C 1, C 2
Robustness	See Annex C 1, C 2
Maximum setting torque moment	See Annex B 5
Minimum edge distance and spacing	See Annex B 5
Resistance to steel failure (shear)	See Annex C 3, C 4
Resistance to pry-out failure	See Annex C 3, C 4
Resistance to concrete edge failure	See Annex C 3, C 4
Displacements under short term and long term loading	See Annex C 5
Durability of metal parts	See Annex A 3
Seismic performance C1 and C2	
Resistance to steel failure	See Annex C 6, C 7, C 8
Resistance to pull-out	See Annex C 6, C 7, C 8
Factor for annular gap	See Annex C 6, C 7, C 8
Displacement	See Annex C 8

3.2 Hygiene, health and environment (BWR 3)

No performance determined.

3.3 General aspects relating to fitness for use

Durability and serviceability are only ensured if the specifications of intended use according to Annex B 1 are kept.

4. Assessment and verification of constancy of performance (AVCP) system applied with reference to its legal base

According to the Decision 96/582/EC of the European Commission¹ the system of assessment verification of constancy of performance (see Annex V to Regulation (EU) No 305/2011) given in the following table apply.

_

Official Journal of the European Communities L 254 of 08.10.1996

Product	Intended use	Level or class	System
	For fixing and/or supporting to concrete, structural elements (which contributes to	_	1
	the stability of the works) or heavy units		'

5. Technical details necessary for the implementation of the AVCP system, as provided in the applicable EAD

5.1 Tasks of the manufacturer

The manufacturer may only use raw materials stated in the technical documentation of this European Technical Assessment.

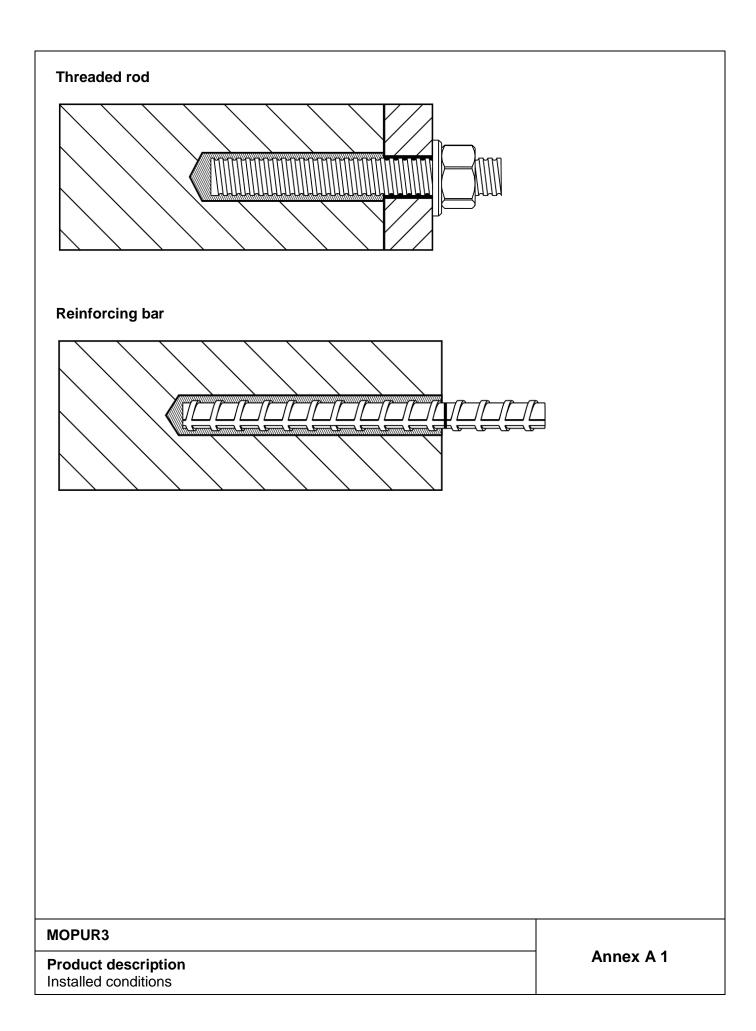
The factory production control shall be in accordance with the control plan which is a part of the technical documentation of this European Technical Assessment. The control plan is laid down in the context of the factory production control system operated by the manufacturer and deposited at Technický a zkušební ústav stavební Praha, s.p.² The results of factory production control shall be recorded and evaluated in accordance with the provisions of the control plan.

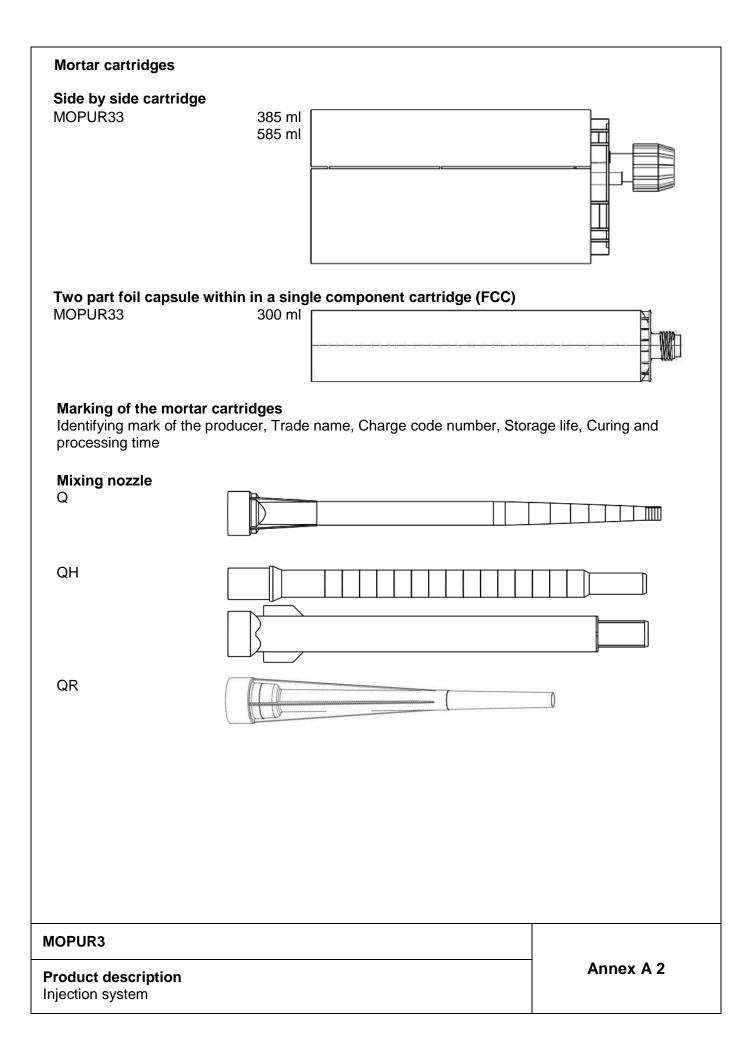
5.2 Tasks of the notified bodies

The notified body shall retain the essential points of its actions referred to above and state the results obtained and conclusions drawn in a written report.

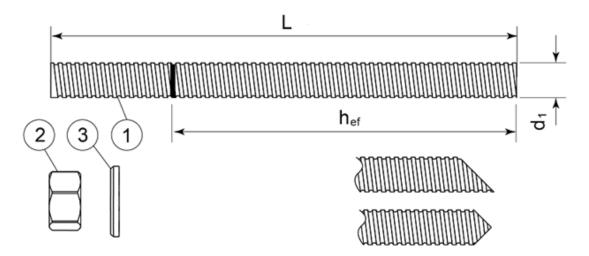
The notified certification body involved by the manufacturer shall issue a certificate of constancy of performance of the product stating the conformity with the provisions of this European Technical Assessment.

In cases where the provisions of the European Technical Assessment and its control plan are no longer fulfilled the notified body shall withdraw the certificate of constancy of performance and inform Technický a zkušební ústav stavební Praha, s.p without delay.


Issued in Prague on 17.07.2019


Ву

Ing. Mária Schaan


Head of the Technical Assessment Body

The control plan is a confidential part of the documentation of the European Technical Assessment, but not published together with the ETA and only handed over to the approved body involved in the procedure of AVCP.

Threaded rod M8, M10, M12, M16, M20, M24, M27, M30

Standard commercial threaded rod with marked embedment depth

Part	Designation	Material									
	Designation										
	zinc plated ≥ 5 µm acc. to EN ISO 40										
	Steel, Hot-dip galvanized ≥ 40 µm acc. to EN ISO 1461 and EN ISO 10684 or Steel, zinc diffusion coating ≥ 15 µm acc. to EN 13811										
Sieei,	Steel, EN 10087 or EN 10263										
1	Anchor rod	Property class 4.6, 5.8, 8.8, 10.9* EN ISO 898-1									
	Hovegon nut	FTOPERTY Class 4.0, 5.0, 6.0, 10.9 EN 150 696-1									
2	Hexagon nut EN ISO 4032	According to threaded rod, EN 20898-2									
	Washer										
3	EN ISO 887, EN ISO 7089,	According to threaded rod									
	EN ISO 7093 or EN ISO 7094	7.000rding to tilloddod rod									
Stain	ess steel	L									
1	Anchor rod	Matarial: A2 70 A4 70 A4 90 EN ISO 3506									
ı	Alichor rod	Material: A2-70, A4-70, A4-80, EN ISO 3506									
2	Hexagon nut	According to threaded rod									
	EN ISO 4032	According to threaded rod									
	Washer										
3	EN ISO 887, EN ISO 7089,	According to threaded rod									
	EN ISO 7093 or EN ISO 7094										
High	corrosion resistant steel										
1	Anchor rod	Material: 1.4529, 1.4565, EN 10088-1									
		11000, 111000, 1110001									
2	Hexagon nut	According to threaded rod									
	EN ISO 4032	,									
_	Washer										
3	EN ISO 887, EN ISO 7089,	According to threaded rod									
	EN ISO 7093 or EN ISO 7094										

^{*}Galvanized rod of high strength are sensitive to hydrogen induced brittle failure

MOPUR3	
Product description Threaded rod and materials	Annex A 3

Rebar Ø8, Ø10, Ø12, Ø16, Ø20, Ø25, Ø32

Standard commercial reinforcing bar with marked embedment depth

Product form	Bars and de-coiled rods			
Class	В	С		
Characteristic yield strength fyk or for	_{0,2k} (MPa)	400 t	o 600	
Minimum value of $k = (f_t/f_y)_k$				
Characteristic strain at maximum for	orce ε _{uk} (%)	≥ 5,0	≥ 7,5	
Bendability		Bend/Re	bend test	
Maximum deviation from nominal	Nominal bar size (mm)			
mass (individual bar) (%)	≤ 8	±6	5,0	
	> 8	±4	ł,5	
Bond: Minimum relative rib area,	Nominal bar size (mm)			
$f_{R,min}$	0,0)40		
	> 12	0,0)56	

MOPUR3	
Product description Rebars and materials	Annex A 4

Specifications of intended use

Anchorages subject to:

- Static and quasi-static load
- Seismic actions category C1 (max w = 0,5 mm):
 - threaded rod size M8, M10, M12, M16, M20, M24, M27, M30
 - rebar size Ø10, Ø12, Ø16, Ø20, Ø25, Ø32
- Seismic actions category C2 (max w = 0,8 mm): threaded rod size M12, M16, M20

Base materials

- Cracked and uncracked concrete
- Reinforced or unreinforced normal weight concrete of strength class C20/25 at minimum and C50/60 at maximum according EN 206:2013.

Temperature range:

• T3: -40°C to +70°C (max. short. term temperature +70°C and max. long term temperature +50°C)

Use conditions (Environmental conditions)

- (X1) Structures subject to dry internal conditions (zinc coated steel, stainless steel, high corrosion resistance steel).
- (X2) Structures subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal condition, if no particular aggressive conditions exist (stainless steel A4, high corrosion resistant steel).
- (X3) Structures subject to external atmospheric exposure and to permanently damp internal condition, if other particular aggressive conditions exist (high corrosion resistant steel).

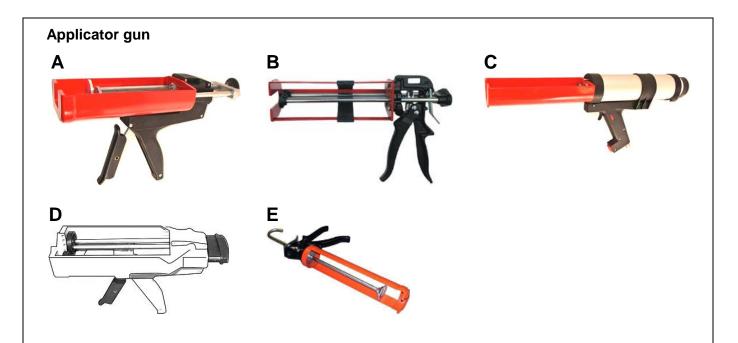
Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used).

Concrete conditions:

- I1 installation in dry or wet (water saturated) concrete and use in service in dry or wet concrete.
- 12 installation in water-filled (not sea water) and use in service in dry or wet concrete

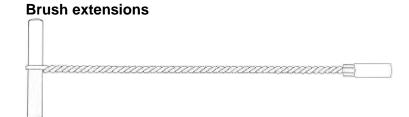
Design:

- The anchorages are designed in accordance with the EN 1992-4 under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored.
 The position of the anchor is indicated on the design drawings.
- Anchorages under seismic actions (cracked concrete) have to be designed in accordance with EN 1992-4.


Installation:

- Hole drilling by hammer drill mode.
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.

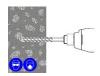
Installation direction:


• D3 – downward and horizontal and upwards (e.g. overhead) installation

MOPUR3	
Intended use Specifications	Annex B 1

Applicator gun	Α	В	С	D	Е
Cartridge	Side by side	Side by side	Side by side	Side by side	Foil capsule
	385 ml	385 ml	385 ml	585 ml	300 ml

Cleaning steel brush



MOPUR3	
Intended use	Annex B 2
Applicator guns	7
Cleaning brush	

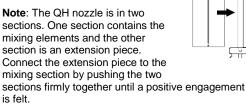

Installation instructions

Before commencing installation ensure the operative is equipped with appropriate personal protection equipment, SDS Hammer Drill, Air, Hole Cleaning Brush, good quality Dispensing Tool - either manual or power operated, Chemical cartridge with mixing nozzle and extension tube, if needed.

1. Using the SDS Hammer Drill in rotary hammer mode for drilling, with a carbide tipped drill bit of the appropriate size, drill the hole to the specified hole diameter and depth.

Insert the Air Lance to the bottom of the hole and depress the trigger for 2 seconds. The compressed air must be clean - free from water and oil - and at a minimum pressure of 6bar.

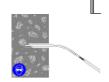
Perform the blowing operation twice.


Select the correct size Hole Cleaning Brush. Ensure that the brush is in good condition and the correct diameter. Insert the brush to the bottom of the hole, using a brush

extension if needed to reach the bottom of the hole and withdraw with a twisting motion. There should be positive interaction between the steel bristles of the brush and the sides of the drilled hole.

Perform the brushing operation twice.

- 4. Repeat 2
- 5. Repeat 3
- 6. Repeat 2
- 7. Select the appropriate static mixer nozzle, checking that the mixing elements are present and correct (do not modify the mixer). Attach mixer nozzle to the cartridge. Check the Dispensing Tool is in good working order. Place the cartridge into the dispensing tool.



8. Extrude some resin to waste until an even-colored mixture is extruded, The cartridge is now ready for use

MIREPPRETER !

9. Attach an extension tube with resin stopper (if required) to the end of the mixing nozzle with a push fit

(The extension tubes may be pushed into the resin stoppers and are held in place with a coarse internal thread).

10. Insert the mixing nozzle to the bottom of the hole. Extrude the resin and slowly withdraw the nozzle from the hole. Ensure no air voids are created as the nozzle is withdrawn. Inject resin until the hole is approximately 3/4 full and remove the nozzle from the hole.

11. Select the steel anchor

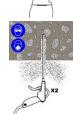
- element ensuring it is free from oil or other contaminants, and mark with the required embedment depth. Insert the steel element into the hole using a back and forth twisting motion to ensure complete cover, until it reaches the bottom of the hole. Excess resin will be expelled from the hole evenly around the steel element and there shall be no gaps between the anchor element and the wall of the drilled hole.
- 12. Clean any excess resin from around the mouth of the hole.
- 13. Do not disturb the anchor until at least the minimum cure time has elapsed. Refer to the Working and Load Timetable to determine the appropriate cure time.

14. Position the fixture and tighten the anchor to the appropriate installation torque.

Do not over-torque the anchor as this could adversely affect its performance.

MOPUR3

Intended use Installation procedure Annex B 3

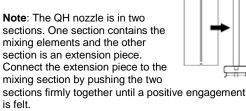

Installation instructions

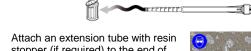
Overhead Substrate Installation Method

 Using the SDS Hammer Drill in rotary hammer mode for drilling, with a carbide tipped drill bit of the appropriate size, drill the hole to the specified hole diameter and depth.

 Select the correct Air Lance, insert to the bottom of the hole and depress the trigger for 2 seconds. The compressed air must be clean – free from water and oil – and at a minimum pressure of 90psi (6bar).

Perform the blowing operation twice.


3. Select the correct size Hole Cleaning Brush. Ensure that the brush is in good condition and the correct diameter. Insert the brush to the bottom of the hole, using a brush extension if needed to reach the bottom of the hole, and withdraw with a twisting motion. *There*


should be positive interaction between the steel bristles of the brush and the sides of the drilled hole.

Perform the brushing operation twice.

- 4. Repeat 2
- 5. Repeat 3
- Repeat 2
- 7. Select the appropriate static mixer nozzle checking that the mixing elements are present and correct (do not modify the mixer). Attach mixer nozzle to the cartridge. Check the Dispensing Tool is in good working order. Place the cartridge into the dispensing tool.

 Extrude some resin to waste until an even-colored mixture is extruded, The cartridge is now ready for use.

 Attach an extension tube with resin stopper (if required) to the end of the mixing nozzle with a push fit. (The extension tubes may be pushed into the resin stoppers and are held in place with a coarse internal thread).

10. Insert the mixing nozzle to the bottom of the hole. Extrude the resin and slowly withdraw the nozzle from the hole. Ensure no air voids are created as the nozzle is withdrawn. Inject resin until the hole is approximately ¾ full and remove the nozzle from the hole.

11. Select the steel anchor element ensuring it is free from oil or other contaminants, and mark with the required embedment depth. Insert the steel element into the hole using a back and forth twisting motion to ensure complete cover, until it reaches the bottom of the hole.

Excess resin will be expelled from the hole evenly around the steel element and there shall be no gaps between the anchor element and the wall of the drilled hole.

- Clean any excess resin from around the mouth of the hole.
- Do not disturb the anchor until at least the minimum cure time has elapsed. Refer to the Working and Load Timetable to determine the appropriate cure time.

 Position the fixture and tighten the anchor to the appropriate installation torque.

Do not over-torque the anchor as this could adversely affect its performance.

MOPUR3

Intended use Installation procedure Annex B 4

Table B1: Installation parameters of threaded rod

Size			M8	M10	M12	M16	M20	M24	M27	M30
Nominal drill hole diameter	$ \emptyset d_0 $	[mm]	10	12	14	18	22	26	30	35
Cleaning brush			S11HF	S14HF	S14/15HF	S22HF	S24HF	S31HF	S31HF	S38HF
Torque moment	max T _{fixt}	[Nm]	10	20	40	80	120	160	180	200
Embedment depth for hef,min	h _{ef}	[mm]	60	60	70	80	90	96	108	120
Embedment depth for hef,max	h _{ef}	[mm]	160	200	240	320	400	480	540	600
Depth of drill hole	h_0	[mm]	h _{ef} +5							
Minimum edge distance	C _{min}	[mm]	40	40	40	40	50	50	50	60
Minimum spacing	Smin	[mm]	40	40	40	40	50	50	50	60
Minimum thickness of member	h_{\min}	[mm]	h _{ef} +	30 mm ≥ 1	100 mm	$h_{ef} + 2d_0$				

Table B2: Installation parameters of rebar

Size			Ø8	Ø10	Ø12	Ø16	Ø20	Ø25	Ø32
Nominal drill hole diameter	$ \emptyset d_0 $	[mm]	12	14	16	20	25	32	40
Cleaning brush			S12/13HF	S14/15HF	S18HF	S22HF	S27HF	S35HF	S43HF
Torque moment	max T _{fixt}	[Nm]	10	20	40	80	120	180	200
Embedment depth for hef,min	h _{ef}	[mm]	60	60	70	80	90	100	128
Embedment depth for hef,max	h _{ef}	[mm]	160	200	240	320	400	500	640
Depth of drill hole	h_0	[mm]	h _{ef} +5	h _{ef} +5	h _{ef} +5	h _{ef} +5	h _{ef} +5	h _{ef} +5	h _{ef} +5
Minimum edge distance	C _{min}	[mm]	40	40	40	40	50	50	70
Minimum spacing	Smin	[mm]	40	40	40	40	50	50	70
Minimum thickness of member	h _{min}	[mm]	$h_{ef} + 30 \text{ mm} \ge 100 \text{ mm}$ $h_{ef} + 2d_0$						

Table B3: Minimum curing time

Base Material Temperature [°C]	Cartridge Temperature [°C]	T Work [mins]	T Load [hrs]
+5	Minimum +10	300	24
+5°C to +10 +10°C to +15	+10°C to +15	150 40	18
+15°C to +20	+15°C to +20	25	12
+20°C to +25	+20°C to +25	18	8
+25°C to +30	+25°C to +30	12	6
+30°C to +35	+30°C to +35	8	4
+35°C to +40	+35°C to +40	6	2
	Ensure cartridge is ≥ 10°0	C	

T Work is typical gel time at highest base material temperature in the range.

MOPUR3	
Intended use Installation parameters	Annex B 5
Curing time	

T Load is minimum set time required until load can be applied at the lowest temperature in the range.

Table C1: Design method EN 1992-4 Characteristic values of resistance to tension load of threaded rod

Steel failure - Characteristic resis	stance													
Size				M8	M1	0	M12	2 M	16 ľ	M20	M24	N	127	M30
Steel grade 4.6	$N_{Rk,s}$	[kN]	15	23	3	34	6	3	98	141	1	84	224
Partial safety factor	γMs		[-]						2,00					
Steel grade 5.8	$N_{Rk,s}$	[kN]	18	29	9	42	7	'9	123	177	2	230	281
Partial safety factor	γMs		[-]						1,50					
Steel grade 8.8	$N_{Rk,s}$	[kN]	29	46	3	67	1:	26	196	282	3	867	449
Partial safety factor	γMs		[-]						1,50					
Steel grade 10.9	$N_{Rk,s}$	[kN]	37	58	3	84	1:	57 2	245	353	4	59	561
Partial safety factor	γMs		[-]						1,33					
Stainless steel grade A2-70, A4-70	$N_{Rk,s}$	[kN]	26	41	1	59	1	10	172	247	3	321	393
Partial safety factor	γMs		[-]						1,87					
Stainless steel grade A4-80	$N_{Rk,s}$	[kN]	29	46	3	67	1:	26	196	282	3	867	449
Partial safety factor	γMs		[-]						1,60					
Stainless steel grade 1.4529	$N_{Rk,s}$	[kN]	26	41	1	59	1	10	172	247	3	321	393
Partial safety factor	γMs		[-]						1,50					
Stainless steel grade 1.4565	$N_{Rk,s}$	[kN]	26	41	1	59	1		172	247	3	321	393
Partial safety factor	γMs		[-]						1,87					
Combined pullout and concrete of	one failure i	in c	oncre	ete C2	20/25									
Size					M8	M	10	M12	M16	M20) M2	24	M27	M30
Characteristic bond resistance in	uncracked	cor				_			=	_	-			
Temperature T3: -40°C to +70°C	τ _{Rk}	,ucr	[N/m	nm²]	14	1	3	13	12	12	11	1	10	9
Dry, wet concrete, flooded hole														
Partial safety factor		inst/	[-	·]						,0				
	C25/30									02				
	C30/37									04				
Factor for uncracked concrete	C35/45	$\mu_{\rm c}$	[-	.ı						06				
	C40/30	Ŭ	•	1						07				
	C45/55 C50/60									80				
Characteristic bond resistance in			oto						١,	09				
				21			, T	7.5	7.5	7	T 7			T -
Temperature T3: -40°C to +70°C	$ au_{R}$	k,cr	[N/m	nm j	8	8	3	7,5	7,5	7	7		5	5
Dry, wet concrete, flooded hole Partial safety factor		, .	[-	<u>.</u> 1					1	,0				
i ariiai saiety iactoi	C25/30	inst/		1						<u>,0</u> 02				
	C30/37								,	04				
	C35/45									06				
Factor for cracked concrete	C40/50 4	μ _c	[-	·]						07				
	C45/55									08				
	C50/60				1,09									
Concrete cone failure														
Factor for concrete cone failure									- 1	1				
for uncracked concrete	k _{ucr,1}	N	r 1						1	1				
Factor for concrete cone failure	- L		[-]						7	,7				
for cracked concrete	k _{cr,1}	N												
			[mm	าไ	1,5h _{ef}									
Edge distance	C _{cr,1}	N		_										
Edge distance Splitting failure	C _{cr,I}	N												
	C _{cr,1}	N			M8	M	10	M12		M20) M2	4	M27	M30
Splitting failure	C _{cr,1}		[mr	n]	M8	M	10	M12	M16) M2	4	M27	M30

MOP	JR3	
	rmances	Annex C 1
	n according to EN 1992-4 cteristic resistance for tension loads - threaded rod	

Table C2: Design method EN 1992-4 Characteristic values of resistance to tension load of rebar

Steel failure - Characteristic resistance									
Size			Ø8	Ø10	Ø12	Ø16	Ø20	Ø25	Ø32
Rebar BSt 500 S	$N_{Rk,s}$	[kN]	28	43	62	111	173	270	442
Partial safety factor	γMs	[-]				1,4			

Size			Ø8	Ø10	Ø12	Ø16	Ø20	Ø25	Ø32
Characteristic bond resistance in	uncracked co	ncrete							
Temperature T3: -40°C to +70°C	$ au_{Rk,ucr}$	[N/mm ²]	12	12	12	11	11	11	7
Dry and wet concrete									•
Installation safety factor	γinst	[-]				1,0			
Flooded hole									
Installation safety factor	γinst	[-]				1,2			
Factor for uncracked concrete	C25/30 C30/37 C35/45 C40/50 C45/55 C50/60	[-]	1,02 1,04 1,06 1,07 1,08 1,09						
Characteristic bond resistance in	cracked conc	rete							
Temperature T3: -40°C to +70°C	$ au_{Rk,cr}$	[N/mm ²]	7	10	9	9	8	8	5
Dry and wet concrete									
Installation safety factor	γinst	[-]				1,0			
Flooded hole									
Installation safety factor	γinst	[-]				1,2			
Factor for cracked concrete	C25/30 C30/37 C35/45 C40/50 C45/55 C50/60	[-]	1,02 1,04 1,06 1,07 1,08 1,09						

Concrete cone failure			
Factor for concrete cone failure	k ₁ ¹⁾		10,1
for uncracked concrete	k _{ucr,N} ²⁾	r 1	11
Factor for concrete cone failure	k ₁ ¹⁾	[-]	7,2
for cracked concrete	k _{cr,N} ²⁾		7,7
Edge distance	C _{cr,N}	[mm]	1,5h _{ef}

Splitting failure									
Size	·		Ø8	Ø10	Ø12	Ø16	Ø20	Ø25	Ø32
Edge distance	C _{cr,sp}	[mm]	2 • h _{ef}						
Spacing	S _{cr,sp}	[mm]	2 • C _{cr,sp}						

MOPUR3	
Performances Design according to EN 1992-4 Characteristic resistance for tension loads - rebar	Annex C 2

Table C3: Design method EN 1992-4 Characteristic values of resistance to shear load of threaded rod

Steel failure without lever arm			1	•	,	,	•	,		
Size			M8	M10	M12	M16	M20	M24	M27	M30
Steel grade 4.6	$V_{Rk,s}$	[kN]	7	12	17	31	49	71	92	112
Partial safety factor	γMs	[-]				1,	,67			
Steel grade 5.8	$V_{Rk,s}$	[kN]	9	15	21	39	61	88	115	140
Partial safety factor	γMs	[-]				1,	,25			
Steel grade 8.8	$V_{Rk,s}$	[kN]	15	23	34	63	98	141	184	224
Partial safety factor	γMs	[-]				1,	,25			
Steel grade 10.9	$V_{Rk,s}$	[kN]	18	29	42	79	123	177	230	281
Partial safety factor	γMs	[-]	1,5							
Stainless steel grade A2-70, A4-70	$V_{Rk,s}$	[kN]	13	20	30	55	86	124	161	196
Partial safety factor	γMs	[-]				1,	,56			
Stainless steel grade A4-80	$V_{Rk,s}$	[kN]	15	23	34	63	98	141	184	224
Partial safety factor	γMs	[-]				1,	,33			
Stainless steel grade 1.4529	$V_{Rk,s}$	[kN]	13	20	30	55	86	124	161	196
Partial safety factor	γMs	[-]	1,25							
Stainless steel grade 1.4565	$V_{Rk,s}$	[kN]	13	20	30	55	86	124	161	196
Partial safety factor	γMs	[-]	1,56							
Characteristic resistance of group of faste	eners									

Steel failure with lever arm										
Size			M8	M10	M12	M16	M20	M24	M27	M30
Steel grade 4.6	$M^{o}_{Rk,s}$	[N.m]	15	30	52	133	260	449	666	900
Partial safety factor	γMs	[-]				1	,67			
Steel grade 5.8	$M^{o}_{Rk,s}$	[N.m]	19	37	66	166	325	561	832	1125
Partial safety factor	γMs	[-]				1,	,25			
Steel grade 8.8	$M^{o}_{Rk,s}$	[N.m]	30	60	105	266	519	898	1332	1799
Partial safety factor	γMs	[-]				1	,25			
Steel grade 10.9	$M^{o}_{Rk,s}$	[N.m]	37	75	131	333	649	1123	1664	2249
Partial safety factor	γMs	[-]	1,50							
Stainless steel grade A2-70, A4-70	$M^o_{Rk,s}$	[N.m]	26	52	92	233	454	786	1165	1574
Partial safety factor	γMs	[-]				1	,56			
Stainless steel grade A4-80	$M^{o}_{Rk,s}$	[N.m]	30	60	105	266	519	898	1332	1799
Partial safety factor	γMs	[-]				1	,33			
Stainless steel grade 1.4529	$M^{o}_{Rk,s}$	[N.m]	26	52	92	233	454	786	1165	1574
Partial safety factor	γMs	[-]				1	,25			
Stainless steel grade 1.4565	$M^{o}_{Rk,s}$	[N.m]	26	52	92	233	454	786	1165	1574
Partial safety factor	γMs	[-]	1,56							
Concrete pryout failure										
Factor for resistance to pry-out failure	k ₈	[-]		•	•	•	2		•	•

Concrete edge failure									
Size		M8	M10	M12	M16	M20	M24	M27	M30
Outside diameter of fastener d _{nom}	[mm]	8	10	12	16	20	24	27	30
Effective length of fastener \$\ell_f\$	[mm]	min (h _{ef} , 8 d _{nom})						_	

MOPUR3	
Performances Design according to EN 1992-4 Characteristic resistance for shear loads - threaded rod	Annex C 3

Table C4: Design method EN 1992-4 Characteristic values of resistance to shear load of rebar

Steel failure without lever arm									
Size			Ø8	Ø10	Ø12	Ø16	Ø20	Ø25	Ø32
Rebar BSt 500 S	V _{Rk,s} [kN	N]	14	22	31	55	86	135	221
Partial safety factor	γ _{Ms} [-]]	1,5						
Characteristic resistance of group of fasteners									
Ductility factor	V I								

Steel failure with lever arm										
Size		Ø8	Ø10	Ø12	Ø16	Ø20	Ø25	Ø32		
Rebar BSt 500 S	$M^{o}_{Rk,s}$ [N.m] 33	65	112	265	518	1013	2122		
Partial safety factor	γMs [-]				1,5					
Concrete pryout failure										
Factor for resistance to pry-out failure	k ₈ [-]				2					

Concrete edge failure									
Size		Ø8	Ø10	Ø12	Ø16	Ø20	Ø25	Ø32	
Outside diameter of fastener d _{nom}	[mm]	8	10	12	16	20	25	32	
Effective length of fastener \$\ell_f\$	[mm]	min (h _{ef} , 8 d _{nom})							

MOPUR3	
Performances	Annex C 4
Design according to EN 1992-4	
Characteristic resistance for shear loads - rebar	

Table C5: Displacement of threaded rod under tension and shear load

Size		M8	M10	M12	M16	M20	M24	M27	M30		
Tensio	Tension load										
Uncra	Uncracked concrete										
F	[kN]	11,9	14,3	19,0	23,8	35,7	35,7	45,2	45,2		
δ_{N0}	[mm]	0,3	0,3	0,3	0,4	0,4	0,5	0,5	0,5		
$\delta_{N^{\infty}}$	[mm]	0,6	0,6	0,6	0,6	0,6	0,6	0,6	0,6		
Crack	Cracked concrete										
F	[kN]	5,7	9,5	14,3	16,7	23,8	28,6	28,6	28,6		
δ_{N0}	[mm]	0,3	0,4	0,4	0,5	0,5	0,6	0,6	0,7		
$\delta_{N^{\infty}}$	[mm]	2,0	2,0	2,0	2,0	2,0	2,0	2,0	2,0		
Shear	load										
F	[kN]	3,5	5,5	8,0	15,0	23,3	33,6	43,7	53,4		
δ_{V0}	[mm]	2,5	2,5	2,5	2,5	2,5	2,5	2,5	2,5		
$\delta_{V^{\infty}}$	[mm]	3,7	3,7	3,7	3,7	3,7	3,7	3,7	3,7		

Table C6: Displacement of rebar under tension and shear load

Size		Ø8	Ø10	Ø12	Ø16	Ø20	Ø25	Ø32			
Tensio	on load										
Uncra	cked cor	ncrete									
F	[kN]	7,6	11,9	16,7	28,6	35,7	45,2	66,7			
δ_{N0}	[mm]	0,3	0,3	0,4	0,4	0,4	0,5	0,5			
$\delta_{N^{\infty}}$	[mm]	0,6	0,6	0,6	0,6	0,6	0,6	0,6			
	Cracked concrete										
F	[kN]	5,7	9,5	11,9	19,0	23,8	28,6	35,7			
δ_{N0}	[mm]	0,3	0,4	0,4	0,5	0,5	0,5	0,6			
$\delta_{N^{\infty}}$	[mm]	2,0	2,0	2,0	2,0	2,0	2,0	2,0			
Shear	load		_	_	_	<u>-</u>	-	-			
F	[kN]	6,6	10,3	14,8	26,3	41,1	64,3	105,3			
δ_{V0}	[mm]	2,5	2,5	2,5	2,5	2,5	2,5	2,5			
$\delta_{V^{\infty}}$	[mm]	3,7	3,7	3,7	3,7	3,7	3,7	3,7			

MOPUR3	
Performances Displacement for threaded rod and rebar	Annex C 5

Table C7: Seismic performance category C1 of threaded rod

Size			М8	M10	M12	M16	M20	M24	M27	M30
Tension load										
Steel failure										
Characteristic resistance grade 4.6	$N_{Rk,s,eq,C1}$	[kN]	15	23	34	63	98	141	184	224
Partial safety factor	γMs	[-]				2.0				
Characteristic resistance grade 5.8	N _{Rk,s,eq,C1}	[kN]	18	29	42	79	123	177	230	281
Partial safety factor	γΜs	[-]	_		•	1,		•		
Characteristic resistance grade 8.8	N _{Rk,s,eq,C1}	[kN]	29	46	67	126	196	282	367	449
Partial safety factor	γΜs	[-]			•		50	•		
Characteristic resistance grade 10.9	$N_{Rk,s,eq,C1}$	[kN]	37	58	84	157	245	353	459	561
Partial safety factor	γMs	[-]		•	•	1,3	33	•		
Characteristic resistance A2-70, A4-70	$N_{Rk,s,eq,C1}$	[kN]	26	41	59	110	172	247	321	393
Partial safety factor	γMs	[-]				1,8	87			
Characteristic resistance A4-80	$N_{Rk,s,eq,C1}$	[kN]	29	46	67	126	196	282	367	449
Partial safety factor	γMs	[-]				1,0	60			
Characteristic resistance 1.4529	$N_{Rk,s,eq,C1}$	[kN]	26	41	59	110	172	247	321	393
Partial safety factor	γMs	[-]				1,	50			
Characteristic resistance 1.4565	$N_{Rk,s,eq,C1}$	[kN]	26	41	59	110	172	247	321	393
Partial safety factor	γMs	[-]				1,8	87			
Characteristic resistance to pull-out										
Temperature T3: -40°C to +70°C	$ au_{Rk,p,eq,C1}$	[N/mm ²]	8,0	8,0	7,5	7,5	7,0	7,0	5,0	4,5
Installation safety factor	γinst	[-]				1,	,0			
Shoor load										
1311E41 1040										
Shear load Steel failure without lever arm										
Steel failure without lever arm Characteristic resistance grade 4.6	VRks eg C1	[kN]	5	9	13	20	32	28	37	45
Steel failure without lever arm Characteristic resistance grade 4.6	V _{Rk,s,eq,C1}	[kN]	5	9	13			28	37	45
Steel failure without lever arm Characteristic resistance grade 4.6 Partial safety factor	γMs	[-]	5	9	13	20 1,0 26		28	37	45
Steel failure without lever arm Characteristic resistance grade 4.6						1,0	67 40			
Steel failure without lever arm Characteristic resistance grade 4.6 Partial safety factor Characteristic resistance grade 5.8	γ_{Ms} $V_{Rk,s,eq,C1}$ γ_{Ms}	[-] [kN]				1,0 26	67 40			
Steel failure without lever arm Characteristic resistance grade 4.6 Partial safety factor Characteristic resistance grade 5.8 Partial safety factor	γ_{Ms} $V_{Rk,s,eq,C1}$	[-] [kN] [-]	7	11	16	1,0 26 1,2	67 40 25 64	35	46	56
Steel failure without lever arm Characteristic resistance grade 4.6 Partial safety factor Characteristic resistance grade 5.8 Partial safety factor Characteristic resistance grade 8.8	$\begin{array}{c} \gamma_{\text{Ms}} \\ V_{\text{Rk,s,eq,C1}} \\ \gamma_{\text{Ms}} \\ V_{\text{Rk,s,eq,C1}} \\ \gamma_{\text{Ms}} \end{array}$	[-] [kN] [-] [kN]	7	11	16	1,0 26 1,2	67 40 25 64	35	46	56
Steel failure without lever arm Characteristic resistance grade 4.6 Partial safety factor Characteristic resistance grade 5.8 Partial safety factor Characteristic resistance grade 8.8 Partial safety factor	γ_{Ms} $V_{Rk,s,eq,C1}$ γ_{Ms} $V_{Rk,s,eq,C1}$	[-] [kN] [-] [kN] [-]	7	11	16	1,0 26 1,2 41 1,2	67 40 25 64 25 80	35	46	56
Steel failure without lever arm Characteristic resistance grade 4.6 Partial safety factor Characteristic resistance grade 5.8 Partial safety factor Characteristic resistance grade 8.8 Partial safety factor Characteristic resistance grade 10.9	γMs V _{Rk,s,eq,C1} γMs V _{Rk,s,eq,C1} γMs V _{Rk,s,eq,C1} γMs	[-] [kN] [-] [kN] [-] [kN]	7	11	16	1,0 26 1,1 41 1,1	67 40 25 64 25 80	35	46	56
Steel failure without lever arm Characteristic resistance grade 4.6 Partial safety factor Characteristic resistance grade 5.8 Partial safety factor Characteristic resistance grade 8.8 Partial safety factor Characteristic resistance grade 10.9 Partial safety factor	γMs V _{Rk,s,eq,C1} γMs V _{Rk,s,eq,C1} γMs V _{Rk,s,eq,C1}	[-] [kN] [-] [kN] [-] [kN]	7 11 14	11 17 22	16 25 32	1,0 26 1,2 41 1,2 51	67 40 25 64 25 80 50 56	35 56 71	46 73 92	56 90 112
Steel failure without lever arm Characteristic resistance grade 4.6 Partial safety factor Characteristic resistance grade 5.8 Partial safety factor Characteristic resistance grade 8.8 Partial safety factor Characteristic resistance grade 10.9 Partial safety factor Characteristic resistance Grade 10.9 Partial safety factor Characteristic resistance A2-70, A4-70	γMs VRk,s,eq,C1 γMs VRk,s,eq,C1 γMs VRk,s,eq,C1 γMs VRk,s,eq,C1 γMs	[-] [kN] [-] [kN] [-] [kN]	7 11 14	11 17 22	16 25 32	1,6 26 1,3 41 1,3 51 1,6	67 40 25 64 25 80 50 56	35 56 71	46 73 92	56 90 112
Steel failure without lever arm Characteristic resistance grade 4.6 Partial safety factor Characteristic resistance grade 5.8 Partial safety factor Characteristic resistance grade 8.8 Partial safety factor Characteristic resistance grade 10.9 Partial safety factor Characteristic resistance grade 10.9 Partial safety factor Characteristic resistance A2-70, A4-70 Partial safety factor	γMs VRk,s,eq,C1 γMs VRk,s,eq,C1 γMs VRk,s,eq,C1 γMs VRk,s,eq,C1	[-] [kN] [-] [kN] [-] [kN] [-] [kN]	7 11 14	11 17 22 15	16 25 32 22	1,4 26 1,2 41 1,2 51 1,4 36 1,4	67 40 25 64 25 80 50 56	35 56 71 49	46 73 92 64	56 90 112 79
Steel failure without lever arm Characteristic resistance grade 4.6 Partial safety factor Characteristic resistance grade 5.8 Partial safety factor Characteristic resistance grade 8.8 Partial safety factor Characteristic resistance grade 10.9 Partial safety factor Characteristic resistance A2-70, A4-70 Partial safety factor Characteristic resistance A4-80 Partial safety factor Characteristic resistance A4-80 Partial safety factor Characteristic resistance 1.4529	γMs VRk,s,eq,C1 γMs VRk,s,eq,C1 γMs VRk,s,eq,C1 γMs VRk,s,eq,C1 γMs VRk,s,eq,C1	[-] [kN] [-] [kN] [-] [kN] [-] [kN]	7 11 14	11 17 22 15	16 25 32 22	1,4 26 1,3 41 1,3 51 1,4 36 1,4 41 1,3	67 40 25 64 25 80 50 56 64 33 56	35 56 71 49	46 73 92 64	56 90 112 79
Steel failure without lever arm Characteristic resistance grade 4.6 Partial safety factor Characteristic resistance grade 5.8 Partial safety factor Characteristic resistance grade 8.8 Partial safety factor Characteristic resistance grade 10.9 Partial safety factor Characteristic resistance A2-70, A4-70 Partial safety factor Characteristic resistance A4-80 Partial safety factor Characteristic resistance A4-80 Partial safety factor Characteristic resistance 1.4529 Partial safety factor	γMs VRk,s,eq,C1 γMs VRk,s,eq,C1 γMs VRk,s,eq,C1 γMs VRk,s,eq,C1 γMs VRk,s,eq,C1 γMs VRk,s,eq,C1 γMs	[-] [kN] [-] [kN] [-] [kN] [-] [kN] [-]	7 11 14 10	11 17 22 15	16 25 32 22 25 22	1,4 26 1,3 41 1,5 51 1,4 36 1,4 41	67 40 25 64 25 80 50 56 64 33 56	35 56 71 49 56 49	46 73 92 64 73	56 90 112 79 90 79
Steel failure without lever arm Characteristic resistance grade 4.6 Partial safety factor Characteristic resistance grade 5.8 Partial safety factor Characteristic resistance grade 8.8 Partial safety factor Characteristic resistance grade 10.9 Partial safety factor Characteristic resistance A2-70, A4-70 Partial safety factor Characteristic resistance A4-80 Partial safety factor Characteristic resistance 1.4529 Partial safety factor Characteristic resistance 1.4565	γMs VRk,s,eq,C1 γMs VRk,s,eq,C1 γMs VRk,s,eq,C1 γMs VRk,s,eq,C1 γMs VRk,s,eq,C1 γMs VRk,s,eq,C1 γMs	[-] [kN] [-] [kN] [-] [kN] [-] [kN] [-] [kN] [-] [kN]	7 11 14 10	11 17 22 15	16 25 32 22 25	1,4 26 1,2 41 1,3 51 36 1,4 41 1,3 36	67 40 25 64 25 80 50 56 64 33 56 25 56	35 56 71 49 56	46 73 92 64 73	56 90 112 79 90
Steel failure without lever arm Characteristic resistance grade 4.6 Partial safety factor Characteristic resistance grade 5.8 Partial safety factor Characteristic resistance grade 8.8 Partial safety factor Characteristic resistance grade 10.9 Partial safety factor Characteristic resistance A2-70, A4-70 Partial safety factor Characteristic resistance A4-80 Partial safety factor Characteristic resistance 1.4529 Partial safety factor Characteristic resistance 1.4565 Partial safety factor	Умs VRk,s,eq,C1 Умs	[-] [kN] [-] [kN] [-] [kN] [-] [kN] [-] [kN] [-] [kN]	7 11 14 10 11 10	11 17 22 15 17 15	16 25 32 22 25 22	1,4 26 1,2 41 1,3 51 36 1,4 36 1,3 36	67 40 25 64 25 80 56 56 64 33 56 25 56	35 56 71 49 56 49	46	56 90 112 79 90 79
Steel failure without lever arm Characteristic resistance grade 4.6 Partial safety factor Characteristic resistance grade 5.8 Partial safety factor Characteristic resistance grade 8.8 Partial safety factor Characteristic resistance grade 10.9 Partial safety factor Characteristic resistance grade 10.9 Partial safety factor Characteristic resistance A2-70, A4-70 Partial safety factor Characteristic resistance A4-80 Partial safety factor Characteristic resistance 1.4529 Partial safety factor Characteristic resistance 1.4565 Partial safety factor Characteristic shear load resistance V _{Rk,s,e}	γMs VRk,s,eq,C1 γMs	[-] [kN] [-] [kN] [-] [kN] [-] [kN] [-] [kN] [-] [kN] [-] [c]	7 11 14 10 11 10 10 be multi	11 17 22 15 17 15 15 tiplied b	16 25 32 22 25 22	1,4 26 1,2 41 1,3 51 36 1,4 36 1,3 36	67 40 25 64 25 80 56 56 64 33 56 25 56	35 56 71 49 56 49	46	56 90 112 79 90 79
Steel failure without lever arm Characteristic resistance grade 4.6 Partial safety factor Characteristic resistance grade 5.8 Partial safety factor Characteristic resistance grade 8.8 Partial safety factor Characteristic resistance grade 10.9 Partial safety factor Characteristic resistance A2-70, A4-70 Partial safety factor Characteristic resistance A4-80 Partial safety factor Characteristic resistance 1.4529 Partial safety factor Characteristic resistance 1.4565 Partial safety factor Characteristic resistance 1.4565 Partial safety factor Characteristic shear load resistance V _{Rk,s,ec} gal	γMs VRk,s,eq,C1 γMs	[-] [kN] [-] [c] [c] [c] [c] [c] [c] [c] [c] [c] [c	7 11 14 10 11 10 10 be multitandard	11 17 22 15 17 15 15 15 tiplied b	16 25 32 22 25 22 22 22 29 y follow	1,4 26 1,2 41 1,2 51 36 1,4 41 1,5 36 1,2 wing re	67 40 25 64 25 80 56 56 64 33 56 25 56 66 duction	35 56 71 49 56 49 49 factor	46	56 90 112 79 90 79 79 t-dip
Steel failure without lever arm Characteristic resistance grade 4.6 Partial safety factor Characteristic resistance grade 5.8 Partial safety factor Characteristic resistance grade 8.8 Partial safety factor Characteristic resistance grade 10.9 Partial safety factor Characteristic resistance grade 10.9 Partial safety factor Characteristic resistance A2-70, A4-70 Partial safety factor Characteristic resistance A4-80 Partial safety factor Characteristic resistance 1.4529 Partial safety factor Characteristic resistance 1.4565 Partial safety factor Characteristic shear load resistance V _{Rk,s,e}	γMs VRk,s,eq,C1 γMs	[-] [kN] [-] [kN] [-] [kN] [-] [kN] [-] [kN] [-] [kN] [-] [c]	7 11 14 10 11 10 10 be multi	11 17 22 15 17 15 15 tiplied b	16 25 32 22 25 22	1,4 26 1,2 41 1,3 51 36 1,4 36 1,3 36	67 40 25 64 25 80 50 56 64 33 56 25 56 ductior 0,54	35 56 71 49 56 49	46	56 90 112 79 90 79

The anchor shall be used with minimum rupture elongation after fracture A_{5} equal to 19%.

MOPUR3	
Performances Seismic performance category C1 of threaded rod	Annex C 6

Table C8: S	Seismic performance	category C1 of rebar
-------------	---------------------	----------------------

Size			Ø10	Ø12	Ø16	Ø20	Ø25	Ø32
Tension load								
Steel failure								
Rebar BSt 500 S	$N_{Rk,s,eq,C1}$	[kN]	43	62	111	173	270	442
Partial safety factor	γMs	[-]	1,4					
Characteristic resistance to pull-out								
Temperature T3: -40°C to +70°C	τ _{Rk,p,eq,C1}	[N/mm ²]	8,9	9,0	9,0	8,0	7,5	4,8
Dry and wet concrete								
Installation safety factor	γinst	[-]	1,0					
Flooded hole								
Installation safety factor			1	,2				

Shear load								
Steel failure without lever arm								
Rebar BSt 500 S	$V_{Rk,s,eq,C1}$	[kN]	16	23	41	69	67	111
Partial safety factor	γMs	[-]	1,5					
Factor for annular gap	$lpha_{\sf gap}$	[-]			0	,5		

MOPUR3	
Performances Seismic performance category C1 of rebar	Annex C 7

Table C9: Seismic performance category C2 of threaded rod

		M12	M16	M20		
N _{Rk,s,eq,C2}	[kN]	34	63	98		
	[-]		2,00	·		
	[kN]	42	79	123		
	[-]		1,50	·		
		67		196		
	[-]		1,50			
	[kN]	84	157	245		
γMs	[-]		1,33			
	[kN]	59	110	172		
γMs	[-]		1,87	I		
N _{Rk.s.eg.C2}	[kN]	67	126	196		
γMs	[-]		1,60			
N _{Rk.s.eg.C2}	[kN]	59	110	172		
	[-]		1,50			
	[kN]	59	110	172		
	[-]		1,87	·		
Partial safety factor γ _{Ms} [-] 1,87 Characteristic resistance to pull-out						
TRk n ea C2	[N/mm ²]	3.2	3.7	4,2		
	[-]	- ,		,		
\/	[LAJ]	10	10	28		
		13		20		
	L J	16	, -	35		
		10		33		
		OF.	, -	56		
		23		30		
		22		70		
		32		70		
		22		49		
		22		49		
		25	1	56		
		23		30		
		22		49		
				 + 3		
		22		49		
				<u>+</u> ₹		
		multiplied	,	reduction		
Characteristic shear load resistance V _{Rk,s,eq} in the Table C9 shall be multiplied by following reduction factor for hot-dip galvanized commercial standard rods						
i the Table (inized comi	mercial sta	ndard rods	,	,		
anized company	mercial sta	ndard rods 0.46	0,61	0,61		
	$N_{Rk,s,eq,C2}$ γ_{Ms} $N_{Rk,s,eq,C2}$	γMs [-] NRk,s,eq,C2 [kN] γMs [-] VRk,s,eq,C2 [kN] γMs [-]	γMs [-] N _{Rk,s,eq,C2} [kN] 42 γMs [-] 67 γMs [-] 84 γMs [-] 84 γMs [-] 7 N _{Rk,s,eq,C2} [kN] 59 γMs [-] 7 N _{Rk,s,eq,C2} [kN] 59 γMs [-] 7 N _{Rk,s,eq,C2} [kN] 59 γMs [-] 7 V _{Rk,s,eq,C2} [kN] 3,2 γinst [-] 7 V _{Rk,s,eq,C2} [kN] 16 γ _{Ms} [-] 7 V _{Rk,s,eq,C2} [kN] 32 γ _{Ms} [-] 7 V _{Rk,s,eq,C2} [kN] 25 γ _{Ms} [-] 7 V _{Rk,s,eq,C2} [kN] 25 γ _{Ms} [-] 7 V _{Rk,s,eq,C2} [kN] 25 γ _{Ms} [-] 7 <t< td=""><td>γMs [-] 2,00 N_{Rk,s,eq,C2} [kN] 42 79 γMs [-] 1,50 N_{Rk,s,eq,C2} [kN] 67 126 γMs [-] 1,50 N_{Rk,s,eq,C2} [kN] 84 157 γMs [-] 1,33 N_{Rk,s,eq,C2} [kN] 59 110 γMs [-] 1,87 N_{Rk,s,eq,C2} [kN] 67 126 γMs [-] 1,60 N_{Rk,s,eq,C2} [kN] 59 110 γMs [-] 1,50 N_{Rk,s,eq,C2} [kN] 59 110 γMs [-] 1,87 τ_{Rk,p,eq,C2} [kN] 59 110 γMs [-] 1,67 ν_{Rk,s,eq,C2} [kN] 1 1,67 ν_{Rk,s,eq,C2} [kN] 1 1,25 ν_{Rk,s,eq,C2} [kN] 1 1,25 ν_{Rk,s,eq,C2} [k</td></t<>	γMs [-] 2,00 N _{Rk,s,eq,C2} [kN] 42 79 γMs [-] 1,50 N _{Rk,s,eq,C2} [kN] 67 126 γMs [-] 1,50 N _{Rk,s,eq,C2} [kN] 84 157 γMs [-] 1,33 N _{Rk,s,eq,C2} [kN] 59 110 γMs [-] 1,87 N _{Rk,s,eq,C2} [kN] 67 126 γMs [-] 1,60 N _{Rk,s,eq,C2} [kN] 59 110 γMs [-] 1,50 N _{Rk,s,eq,C2} [kN] 59 110 γMs [-] 1,87 τ _{Rk,p,eq,C2} [kN] 59 110 γMs [-] 1,67 ν _{Rk,s,eq,C2} [kN] 1 1,67 ν _{Rk,s,eq,C2} [kN] 1 1,25 ν _{Rk,s,eq,C2} [kN] 1 1,25 ν _{Rk,s,eq,C2} [k		

Table C10: Displacement under tensile and shear load - seismic category C2 of threaded rod

Size		M12	M16	M20
$\delta_{N,eq(DLS)}$	[mm]	0,20	0,40	0,77
$\delta_{N,eq(ULS)}$	[mm]	0,76	0,74	1,68
$\delta_{V,eq(DLS)}$	[mm]	5,29	4,12	4,94
$\delta_{V,eq(ULS)}$	[mm]	10,20	90,5	10,99

The anchor shall be used with minimum rupture elongation after fracture A_{5} equal to 19%.

MOPUR3			
Performances Seismic performance category C2 of threaded rod	Annex C 8		